Ученый создавший теорию химического строения органических веществ. Теория строения органических соединений

Как наука оформилась в начале XIX в., когда шведский ученый Й. Я. Берцелиус впервые ввел понятие об органических веществах и об органической химии. Первая теория в органической химии - теория радикалов. Химиками было обнаружено, что при химических превращениях группы из нескольких атомов в неизменном виде переходят из молекулы одного вещества в молекулу другого вещества, подобно тому как переходят из молекулы в молекулу атомы элементов. Такие «неизменяемые» группы атомов и получили название радикалов.

Однако далеко не все ученые были согласны с теорией радикалов. Многие вообще отвергали идею атомистики - представления о сложном строении молекулы и существовании атома как ее составной части. То, что неоспоримо доказано в наши дни и не вызывает ни малейших сомнений, в XIX в. было предметом ожесточенных споров.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Органическая химия — раздел химии, в котором изучают соединения углерода, их строение, свойства, взаимопревращения.

Само название дисциплины — «органическая химия» — возникло достаточно давно. Причина его кроется в том, что большинство соединений углерода, с которыми сталкивались исследователи на начальном этапе становления химической науки, имели растительное или животное происхождение. Тем не менее, в порядке исключения, отдельные соединения углерода относят к неорганическим. Так, например, неорганическими веществами принято считать оксиды углерода, угольную кислоту, карбонаты, гидрокарбонаты, циановодород и некоторые другие.

В настоящее время известно чуть менее 30-ти миллионов разнообразных органических веществ и этот список непрерывно пополняется. Такое огромное число органических соединений связано, прежде всего, со следующими специфическими свойствами углерода:

1) атомы углерода могут соединяться друг с другом в цепи произвольной длины;

2) возможно не только последовательное (линейное) соединение атомов углерода между собой, но также разветвленное и даже циклическое;

3) возможны разные виды связей между атомами углерода, а именно одинарные, двойные и тройные. При этом валентность углерода в органических соединениях всегда равна четырем.

Помимо этого, большому разнообразию органических соединений способствует также и то, что атомы углерода способны образовывать связи и с атомами многих других химических элементов, например, водородом, кислородом, азотом, фосфором, серой, галогенами. При этом водород, кислород и азот встречаются наиболее часто.

Следует отметить, что довольно долго органическая химия представляла для ученых «темный лес». Какое-то время в науке даже была популярна теория витализма, согласно которой органические вещества не могут быть получены «искусственным» способом, т.е. вне живой материи. Однако теория витализма просуществовала не очень долго, ввиду того что одно за одним обнаруживались вещества, синтез которых возможен вне живых организмов.

У исследователей вызывало недоумение то, что многие органические вещества имеют одинаковый качественный и количественный состав, однако часто обладают совершенно непохожими друг на друга физическими и химическими свойствами. Так, например, диметиловый эфир и этиловый спирт имеют абсолютно одинаковый элементный состав, однако диметиловый эфир в обычных условиях представляет собой газ, а этиловый спирт – жидкость. Кроме того, диметиловый эфир с натрием не реагирует, а этиловый спирт взаимодействует с ним, выделяя газообразный водород.

Исследователями XIX века было выдвинуто множество предположений касательно того, как все-таки устроены органические вещества. Существенно важные предположения были выдвинуты немецким ученым Ф.А.Кекуле, который первый высказал идею о том, что атомы разных химических элементов имеют конкретные значения валентностей, а атомы углерода в органических соединениях четырехвалентны и способны объединяться друг с другом, образуя цепи. Позднее, отталкиваясь от предположений Кекуле, российский ученый Александр Михайлович Бутлеров разработал теорию строения органических соединений, которая не потеряла свою актуальность и в наше время. Рассмотрим основные положения этой теории:

1) все атомы в молекулах органических веществ соединены друг с другом в определенной последовательности в соответствии с их валентностью. Атомы углерода имеют постоянную валентность, равную четырем, и могут образовывать друг с другом цепи различного строения;

2) физические и химические свойства любого органического вещества зависят не только от состава его молекул, но также и от порядка соединения атомов в этой молекуле между собой;

3) отдельные атомы, а также группы атомов в молекуле оказывают влияние друг на друга. Такое взаимное влияние отражается в физических и химических свойствах соединений;

4) исследуя физические и химические свойства органического соединения можно установить его строение. Верно также обратное – зная строение молекулы того или иного вещества, можно спрогнозировать его свойства.

Аналогично тому, как периодический закон Д.И.Менделева стал научным фундаментом неорганической химии, теория строения органических веществ А.М. Бутлерова фактически стала отправной точкой в становлении органической химии как науки. Следует отметить, что после создания теории строения Бутлерова органическая химия начала свое развитие очень быстрыми темпами.

Изомерия и гомология

Согласно второму положению теории Бутлерова, свойства органических веществ зависят не только от качественного и количественного состава молекул, но и от порядка соединения атомов в этих молекулах между собой.

В связи с этим, среди органических веществ широко распространено такое явление как изомерия.

Изомерия – явление, когда разные вещества имеют абсолютно одинаковый состав молекул, т.е. одинаковую молекулярную формулу.

Очень часто изомеры сильно отличаются по физическим и химическим свойствам. Например:

Типы изомерии

Структурная изомерия

а) Изомерия углеродного скелета

б) Изомерия положения:

кратной связи

заместителей:

функциональных групп:

в) Межклассовая изомерия:

Межклассовая изомерия имеет место, когда соединения, являющиеся изомерами, относятся к разным классам органических соединений.

Пространственная изомерия

Пространственная изомерия — явление, когда разные вещества при одинаковом порядке присоединения атомов друг к другу отличаются друг от друга фиксировано-различным положением атомов или групп атомов в пространстве.

Существует два типа пространственной изомерии – геометрическая и оптическая. Задания на оптическую изомерию на ЕГЭ не встречаются, поэтому рассмотрим только геометрическую.

Если в молекуле какого-либо соединения есть двойная C=C связь или цикл, иногда в таких случаях возможно явление геометрической или цис-транс -изомерии.

Например, такой вид изомерии возможен для бутена-2. Смысл ее заключается в том, что двойная связь между атомами углерода фактически имеет плоское строение, а заместители при этих атомах углерода могут фиксированно располагаться либо над, либо под этой плоскостью:

Когда одинаковые заместители находятся по одну сторону плоскости говорят, что это цис -изомер, а когда по разные — транс -изомер.

На в виде структурных формул цис- и транс -изомеры (на примере бутена-2) изображают следующим образом:

Отметим, что геометрическая изомерия невозможна в случае, если хотя бы у одного атома углерода при двойной связи будет два одинаковых заместителя. Так, например, цис-транс- изомерия невозможна для пропена:


Пропен не имеет цис-транс -изомеров, так как при одном из атомов углерода при двойной связи два идентичных «заместителя» (атомы водорода)

Как можно видеть из иллюстрации выше, если поменять местами метильный радикал и атом водорода, находящиеся при втором углеродном атоме, по разные стороны плоскости, мы получим ту же самую молекулу, на которую просто посмотрели с другой стороны.

Влияние атомов и групп атомов друг на друга в молекулах органических соединений

Понятие о химической структуре как о последовательности связанных друг с другом атомов было существенно расширено с появлением электронной теории. С позиций данной теории можно объяснить, каким образом атомы и группы атомов в молекуле оказывают влияние друг на друга.

Различают два возможных способа влияния одних участков молекулы на другие:

1) Индуктивный эффект

2) Мезомерный эффект

Индуктивный эффект

Для демонстрации данного явления возьмем для примера молекулу 1-хлорпропана (CH 3 CH 2 CH 2 Cl). Связь между атомами углерода и хлора является полярной, поскольку хлор имеет намного более высокую электроотрицательность по сравнению с углеродом. В результате смещения электронной плотности от атома углерода к атому хлора на атоме углерода формируется частичный положительный заряд (δ+), а на атоме хлора — частичный отрицательный (δ-):

Смещение электронной плотности от одного атома к другому часто обозначают стрелкой, направленной к более электроотрицательному атому:

Однако, интересным является такой момент, что, кроме смещения электронной плотности от первого атома углерода к атому хлора, также имеет место смещение, но в несколько меньшей степени от второго атома углерода к первому, а также от третьего ко второму:

Такое смещение электронной плотности по цепи σ-связей называют индуктивным эффектом (I ). Данный эффект затухает по мере удаления от влияющей группы и уже практически не проявляется после 3 σ-связей.

В случае, когда атом или группа атомов обладают большей электроотрицательностью по сравнению с атомами углерода, говорят, что такие заместители обладают отрицательным индуктивным эффектом (-I ). Таким образом, в рассмотренном выше примере отрицательным индуктивным эффектом обладает атом хлора. Кроме хлора, отрицательным индуктивным эффектом обладают следующие заместители:

–F, –Cl, –Br, –I, –OH, –NH 2 , –CN, –NO 2 , –COH, –COOH

Если электроотрицательность атома или группы атомов меньше электроотрицательности атома углерода, фактически происходит передача электронной плотности от таких заместителей к углеродным атомам. В таком случае говорят, что заместитель обладает положительным индуктивным эффектом (+I ) (является электронодонорным).

Так, заместителями с +I -эффектом являются предельные углеводородные радикалы. При этом выраженность +I -эффекта возрастает с удлинением углеводородного радикала:

–CH 3 , –C 2 H 5 , –C 3 H 7 , –C 4 H 9

Следует отметить, что атомы углерода, находящиеся в разных валентных состояниях, обладают также и разной электроотрицательностью. Атомы углерода в состоянии sp-гибридизации имеют большую электроотрицательность по сравнению с атомами углерода в состоянии sp 2 -гибридизации, которые, в свою очередь, более электроотрицательны, чем атомы углерода в состоянии sp 3 -гибридизации.

Мезомерный эффект (М) , или эффект сопряжения, - влияние заместителя, передаваемое по системе сопряженных π-связей.

Знак мезомерного эффекта определяется по тому же принципу, что и знак индуктивного эффекта. Если заместитель увеличивает электронную плотность в сопряженной системе, он обладает положительным мезомерным эффектом (+М ) и является электронодонорным. Положительным мезомерным эффектом обладают двойные углерод-углеродные связи, заместители, содержащие неподеленную электронную пару: -NH 2 , -OН, галогены.

Отрицательным мезомерным эффектом (–М ) обладают заместители, оттягивающие электронную плотность от сопряженной системы, при этом электронная плотность в системе уменьшается.

Отрицательным мезомерным эффектом обладают группы:

–NO 2 , –COOH, –SO 3 H, -COH, >C=O

За счет перераспределения электронной плотности за счет мезомерного и индуктивного эффектов в молекуле на некоторых атомах появляются частичные положительные или отрицательные заряды, что имеет отражение в химических свойствах вещества.

Графически мезомерный эффект показывают изогнутой стрелкой, которая начинается в центре электронной плотности и завершается там, куда смещается электронная плотность. Так, например, в молекуле хлористого винила мезомерный эффект возникает при сопряжении неподеленной электронной пары атома хлора, с электронами π-связи между углеродными атомами. Таким образом, в результате этого на атоме хлора появляется частичный положительный заряд, а обладающее подвижностью π-электронное облако под воздействием электронной пары смещается в сторону крайнего атома углерода, на котором возникает вследствие этого частичный отрицательный заряд:

Если в молекуле имеются чередующиеся одинарные и двойные связи, то говорят, что молекула содержит сопряженную π-электронную систему. Интересным свойством такой системы является то, что мезомерный эффект в ней не затухает.

Химическая структура молекулы представляет собой наиболее характерную и уникальную ее сторону, поскольку она определяет ее общие свойства (механические, физические, химические и биохимические). Любое изменение в химической структуре молекулы влечет за собой изменение ее свойств. В случае незначительных структурных изменений, внесенных в одну молекулу, следуют небольшие изменения ее свойств (обычно затрагивает физические свойства), если же молекула испытала глубокие структурные изменения, то и ее свойства (особенно химические) будут глубоко изменены.

Например, Альфа-аминопропионовая кислота (Альфа-аланин) имеет следующую структуру:

Альфа-аланин

Что мы видим:

  1. Наличие определенных атомов (С, Н, О, N),
  2. определенное количество атомов, принадлежащих каждому классу, которые связаны в определенном порядке;

Все эти конструктивные особенности определяют целый ряд свойств Альфа-аланина, таких как: твердое агрегатное состояние, температура кипения 295° С, растворимость в воде, оптическая активность, химические свойства аминокислот и т. д.

При наличии связи аминогруппы с другим атомом углерода (т.е. произошло незначительное структурное изменение), что соответствует бета-аланину:

Бета-аланин

Общие химические свойства по-прежнему остаются характерными для аминокислот, но температура кипения составляет уже 200° C и отсутствует оптическая активность.

Если же, например, два атомы в этой молекуле соединены атомом N в следующем порядке (глубокое структурное изменение):

тогда образованное вещество — 1-нитропропан по своим физическим и химическим свойствам совершенно не похож на аминокислоты: 1-нитро-пропан — это желтая жидкость, с температурой кипения 131°С, нерастворим в воде.

Таким образом, взаимосвязь «структура-свойства» позволяет описывать общие свойства вещества с известной структурой и, наоборот, позволяет найти химическую структуру вещества, зная его общие свойства.

Общие принципы теории строения органических соединений

В сущности определения структуры органического соединения, лежат следующие принципы, которые вытекают из связи между их структурой и свойствами:

а) органические вещества, в аналитически чистом состоянии, имеют один и тот же состав, независимо от способа их получения;

б) органические вещества, в аналитически чистом состоянии, обладает постоянными физико-химическими свойствами;

в) органические вещества с постоянным составом и свойствами, имеет только одну уникальную структуру.

В 1861 г. великий русский ученый А. М. Бутлеров в своей статье «О химическом строении вещества» раскрыл основную идею теории химического строения, заключающуюся во влиянии способа связи атомов в органическом веществе на его свойства. Он обобщил все имеющиеся к тому времени знания и представления о строении химических соединений в теории строения органических соединений.

Основные положения теории А. М. Бутлерова

кратко могут быть изложены следующим образом:

  1. В молекуле органического соединения атомы связаны в определенной последовательности, что и определяет его строение.
  2. Атом углерода в составе органических соединений имеет валентность равную четырем.
  3. При одинаковом составе молекулы возможно несколько вариантов соединения атомов этой молекулы между собой. Такие соединения, имеющие один состав, но различное строение были названы изомерами, а подобное явление – изомерией.
  4. Зная строение органического соединения можно предсказать его свойства; зная свойства органического соединения можно предсказать его строение.
  5. Атомы, образующие молекулу подвержены взаимному влиянию, что определяет их реакционную способность. Непосредственно связанные атомы оказывают большее влияние друг на друга, влияние не связанных непосредственно атомов значительно слабее.

Ученик А.М. Бутлерова — В. В. Марковников продолжил изучение вопроса взаимного влияния атомов, что нашло свое отражение в 1869 году в его диссертационной работе «Материалы по вопросу о взаимном влиянии атомов в химических соединениях».

Заслуга А.М. Бутлерова и значение теории химического строения исключительно велико ля химического синтеза. Открылась возможность предсказать основные свойства органических соединений, предвидеть пути их синтеза. Благодаря теории химического строения химики впервые оценили молекулу как упорядоченную систему со строгим порядком связи между атомами. И в настоящее время основные положения теории Бутлерова, несмотря на изменения и уточнения, лежат в основе современных теоретических представлений органической химии.

Категории ,

Химическая природа органических соединений, свойства, отличающие их от соединений неорганических, а также их многообразие нашли объяснение в сформулированной Бутлеровым в 1861 г. теории химического строения (см. § 38).

Согласно этой теории, свойства соединений определяются их качественным и количественным составом, химическим строением, т. е. последовательным порядком соединения между собой образующих молекулу атомов, и их взаимным влиянием. Теория строения органических соединений, развитая и дополненная новейшими воззрениями в области химии и физики атомов и молекул, особенно представлениями о пространственной структуре молекул, о природе химических связей и о характере взаимного влияния атомов, составляет теоретическую основу органической химии.

В современной теории строения органических соединений основными являются следующие положения.

1. Все особенности органических соединений определяются, прежде всего, свойствами элемента углерода.

В соответствии с местом, которое углерод занимает в периодической системе, во внешнем электронном слое его атома (-оболочка) имеются четыре электрона. Он не проявляет выраженной склонности отдавать или присоединять электроны, занимает в этом отношении промежуточное положение между металлами и неметаллами и характеризуется резко выраженной способностью образовывать ковалентные связи. Структура внешнего электронного слоя атома углерода может быть представлена следующими схемами:

Возбужденный атом углерода может участвовать в образовании четырех ковалентных связей. Поэтому в подавляющем большинстве своих соединений углерод проявляет ковалентность, равную четырем.

Так, простейшее органическое соединение углеводород метан имеет состав . Строение его можно изобразить структурой (а) или электронно-структурной (или электронной) (б) формулами:

Электронная формула показывает, что атом углерода в молекуле метана имеет устойчивую восьмиэлектронную внешнюю оболочку (электронный октет), а атомы водорода - устойчивую двухэлектронную оболочку (электронный дублет).

Все четыре ковалентных связи углерода в метане (и в других подобных соединениях) равноценны и симметрично направлены в пространстве. Атом углерода находится как бы в центре тетраэдра (правильной четырехгранной пирамиды), а четыре соединенных с ним атома (в случае метана - четыре атома вершинах тетраэдра (рис. 120). Углы между направлениями любой пары связей (валентные углы углерода) одинаковы и составляют 109° 28".

Это объясняется тем, что в атоме углерода, когда он образует ковалентные связи с четырьмя другими атомами, из одной s- и трех р-орбиталей в результате -гибридизации образуются четыре симметрично расположенные в пространстве гибридные -орбитали, вытянутые в направлении к вершинам тетраэдра.

Рис. 120. Тетраэдрическая модель молекулы метана.

Рис. 121. Схема образования -связей в молекуле метана.

В результате перекрывания -гибридных электронных облаков углерода с электронными облаками других атомов (в метане с шаровыми облаками -электронов атомов водорода) образуются четыре тетраэдрически направленные ковалентные -связи (рис. 121; см. также стр. 131).

Тетраэдрическое строение молекулы метана наглядно выражается ее пространственными моделями - шариковой (рис. 122) или сегментовой (рис. 123). Белые шарики (сегменты) изображают атомы водорода, черные - углерода. Шариковая модель характеризует лишь взаимное пространственное расположение атомов, сегментовая - дает, кроме того, представление об относительных межатомных расстояниях (расстояниях между ядрами . Как показано на рис. 122, структурная формула метана может рассматриваться как проекция его пространственной модели на плоскость чертежа.

2. Исключительным свойством углерода, обусловливающим многообразие органических соединений, является способность его атомов соединяться прочными ковалентными связями друг с другом, образуя углеродные цепи практически неограниченной длины

Валентности атомов углерода, не пошедшие на взаимное соединение, используются для присоединения других атомов или групп (в углеводородах - для присоединения водорода).

Так, углеводороды этан и пропан содержат цепи соответственно из двух и трех атомов углерода.

Рис. 122. Шариковая модель молекулы метана.

Рис. 123. Сегментовая модель молекулы метана.

Строение их выражают следующие структурные и электронные формулы:

Известны соединения, содержащие в цепях сотни и более атомов углерода.

Наращивание углеродной цепи на один атом углерода ведет к увеличению состава на группу . Такое количественное изменение состава приводит к новому соединению, обладающему несколько иными свойствами, т. е. уже качественно отличающемуся от исходного соединения; однако общий характер соединений сохраняется. Так, кроме углеводородов метана , этана , пропана существуют бутан , пентан и т. д. Таким образом, в огромном многообразии органических веществ могут быть выделены ряды однотипных соединений, в которых каждый последующий член отличается от предыдущего на группу . Такие ряды называют гомологическими рядами, их члены по отношению друг к другу являются гомологами, а существование таких рядов называется явлением гомологии.

Следовательно, углеводороды метан, этап, пропан, бутан и т. д. - гомологи одного и того же ряда, который называют рядом предельных, или насыщенных, углеводородов (алканов) или, по первому представителю, - рядом метана.

Вследствие тетраэдрической направленности связей углерода, его атомы, входящие в цепь, располагаются не на прямой, а зигзагообразно, причем, благодаря возможности вращения атомов вокруг оси связи, цепь в пространстве может принимать различные формы (конформации):

Такая структура цепей дает возможность сближаться концевым (б) или другим не смежным атомам углерода (в); в результате возникновения связи между этими атомами углеродные цепи могут замыкаться в кольца (циклы), например:

Таким образом, многообразие органических соединений определяется и тем, что при одинаковом числе атомов углерода в молекуле возможны соединения с открытой, незамкнутой цепью углеродных атомов, а также вещества, молекулы которых содержат циклы (циклические соединения).

3. Ковалентные связи между атомами углерода, образованные одной парой обобщенных электронов, называют простыми (или ординарными) связями.

Связь между атомами углерода может осуществляться не одной, а двумя или тремя общими парами электронов. Тогда получаются цепи с кратными - двойными или тройными связями; эти связи можно изобразить следующим образом:

Простейшие соединения, содержащие кратные связи, - углеводороды этилен (с двойной связью) и ацетилен (с тройной связью):

Углеводороды с кратными связями называются непредельными или ненасыщенными. Этилен и ацетилен - первые представители двух гомологических рядов - этиленовых и ацетиленовых углеводородов.

Рис. 124. Схема образования -связей в молекуле этана.

Простая ковалентная связь (или С: С), образованная перекрыванием двух -гибридных электронных облаков по линии, соединяющей центры атомов (по оси связи), как, например, в этане (рис. 124), представляет собой -связь (см. § 42). Связи также являются -связями - они образуются перекрыванием по оси связи -гибридного облака атома С и шарового облака -электрона атома Н.

Природа кратных углерод-углеродных связей несколько иная. Так, в молекуле этилена при образовании двойной ковалентной связи (или ) в каждом из атомов углерода в гибридизации участвует одна -орбиталь и только две р-орбнтали (-гибридизация); одна из р-орбиталей каждого атома С не гибридизуется. В результате образуются три -гибридных электронных облака, которые участвуют в образовании трех -связей. Всего в молекуле этилена пять связей (четыре и одна ); все они расположены в одной плоскости под углами около 120° друг к другу (рис. 125).

Таким образом, одна из электронных пар в связи осуществляет -связь, а вторая - образуется р-электронами, не участвующими в гибридизации; их облака сохраняют форму объемной восьмерки , ориентированы перпендикулярно к плоскости, в которой расположены -связи, и перекрываются над и под этой плоскостью (рис. 126), образуя -связь (см. § 42).

Рис. 125. Схема образования -связей в молекуле этилена.

Рис. 126. Схема образования -связи в молекуле этилена.

Следовательно, двойная связь С = С представляет собой сочетание одной и одной -связей.

Тройная связь (или ) является сочетанием одной -связи и двух -связей. Например, при образовании молекулы ацетилена в каждом из атомов углерода в гибридизации участвует одна -орбнталь и только одна р-орбиталь (-гибридизация); в результате образуются два -гибридных электронных облака, участвующих в образовании двух -связей. Облака двух р-электронов каждого атома С не гибридизуются, сохраняют свою конфигурацию и участвуют в образовании двух -связей. Таким образом, в ацетилене всего три -связи (одна и две ), направленные вдоль одной прямой, и две -связи, ориентированные в двух взаимно перпендикулярных плоскостях (рис. 127).

Кратные (т. е. двойные и тройные) связи при реакциях легко превращаются в простые; тройная вначале переходит в двойную, а последняя - в простую. Это обусловлено их высокой реакционной способностью и имеет место при присоединении каких-либо атомов к паре атомов углерода, связанных кратной связью.

Переход кратных связей в простые объясняется тем, что обычно -связи обладают меньшей прочностью и поэтому большей лабильностью по сравнению с -связями. При образовании -связей р-электронные облака с параллельными осями перекрываются в значительно меньшей степени, чем электронные облака, перекрывающиеся по оси связи (т. е. гибридные, -электронные или ориентированные вдоль оси связи р-электронные облака).

Рис. 127. Схема образования -связей в молекуле ацетилена.

Рис. 128. Модели молекулы этилена: а - шариковая; б - сегментовая.

Кратные связи прочнее простых. Так, энергия разрыва связи составляет , связи , а связи только .

Из сказанного следует, что в формулах две черточки из трех в связи и одна черточка из двух в связи выражают связи менее прочные, чем простая связь .

На рис. 128 и 129 представлены шариковые и сегментовые пространственные модели соединений с двойной (этилен) и с тройной (ацетилен) связями.

4. Теория строения объяснила многочисленные случаи изомерии органических соединений.

Цепи из атомов углерода могут быть неразветвленными или разветвленными:

Так, состав имеют три предельных углеводорода (пентана) с различным строением цепей - один с неразветвленной цепью (нормального строения) и два с разветвленной (изостроения):

Состав имеют три непредельных углеводорода два нормального строения, но изомерные по положению двойной связи и один - изостроения:

Рис. 129. Модели молекулы ацетилена: а шариковая; б - сегментовая.

Этим непредельным соединениям изомерны два циклических углеводорода, также имеющие состав и изомерные друг другу по величине цикла:

При одном и том же составе соединения могут различаться по строению вследствие различного положения в углеродной цепи и других, не углеродных, атомов, например:

Изомерия может быть обусловлена не только различным порядком соединения атомов. Известно несколько видов пространственной изомерии (стереоизометрии), заключающейся в том, что соответствующие изомеры (стереоизомеры) при одинаковом составе и порядке соединения атомов отличаются различным расположением атомов (или групп атомов) в пространстве.

Так, если в соединении имеется атом углерода, связанный с четырьмя разными атомами или группами атомов (асимметрический атом), то возможны две пространственно-изомерные формы такого соединения. На рис. 130 представлены две тетраэдрические модели молочной кислоты , в которых асимметрический атом углерода (он в формуле помечен звездочкой) находится в центре тетраэдра. Нетрудно заметить, что эти модели невозможно совместить в пространстве: они построены зеркально и отображают пространственную конфигурацию молекул двух различных веществ (в данном примере молочных кислот), отличающихся некоторыми физическими, а главным образом, биологическими свойствами. Такая изомерия называется зеркальной стереоизомерией, а соответствующие изомеры - зеркальными изомерами.

Рис. 130. Тетраэдрические модели молекул зеркальных изомеров молочной кислоты.

Различие в пространственном строении зеркальных изомеров может быть представлено и при помощи структурных формул, в которых показано различное расположение атомных групп при асимметрическом атоме; например, для приведенных на рис. 130 зеркальных изомеров молочной кислоты:

Как уже указано, атомы углерода; соединенные двойной связью, лежат в одной плоскости с четырьмя связями, соединяющими их с другими атомами; углы между направлениями этих связей приблизительно одинаковы (рис. 126). Когда с каждым из атомов углерода при двойной связи соединены различные атомы или группы, возможна так называемая геометрическая стереоизомерия, или цис-транс-изомерия. Примером могут служить пространственные геометрические изомеры дихлорэтилена

В молекулах одного изомера атомы хлора расположены по одну сторону двойной связи, а в молекулах другого - по разные стороны. Первая конфигурация называется цис-, вторая - транс-конфигурацией. Геометрические изомеры отличаются друг от друга по физическим и химическим свойствам.

Существование их обусловлено тем, что двойная связь исключает возможность свободного вращения соединенных атомов вокруг оси связи (такое вращение требует разрыва -связи; см. рис. 126).

5. Взаимное влияние в молекулах органических веществ проявляют прежде всего атомы, непосредственно связанные друг с другом. В этом случае оно определяется характером химической связи между ними, степенью различия в их относительной электроотрицательности и, следовательно, степенью полярности связи.

Например, если судить по суммарным формулам, то в молекуле метана и в молекуле метилового спирта все четыре атома водорода должны обладать одинаковыми свойствами. Но, как будет показано дальше, в метиловом спирте один из атомов водорода способен замещаться щелочным металлом, тогда как в метане атомы водорода такой способности не проявляют. Это объясняется тем, что в спирте атом водорода непосредственно связан не с углеродом, а с кислородом

В приведенных структурных формулах стрелками на черточках связей условно показано смещение пар электронов, образующих ковалентную связь, вследствие различной электроотрицательности, атомов. В метане такое смещение в связи невелико, поскольку электроотрицательность углерода (2,5) лишь незначительно превышает электроотрицательность водорода табл. 6, стр. 118). При этом молекула метана симметрична. В молекуле же спирта связь значительно поляризована, поскольку кислород (электроотрицательность 3,5) гораздо больше оттягивает на себя электронную пару; поэтому атом водорода, соединенный с атомом кислорода, приобретает большую подвижность, т. е. легче отрывается в виде протона.

В органических молекулах имеет значение также взаимное влияние атомов, не связанных друг с другом непосредственно. Так, в метиловом спирте под влиянием кислорода увеличивается реакционная способность не только атома водорода, связанного с кислородом, но и атомов водорода, непосредственно с кислородом не связанных, а соединенных с углеродом. Благодаря этому метиловый спирт довольно легко окисляется, тогда как метан относительно устойчив к действию окислителей. Это объясняется тем, что кислород гидроксильной группы значительно оттягивает на себя пару электронов в связи , соединяющей его с углеродом, электроотрицательность которого меньше.

В результате эффектнвный заряд атома углерода становится более положительным, что вызывает дополнительное смещение пар электронов также и в связях в метиловом спирте, сравни» тельно с теми же связями в молекуле метана. При действии окислителей атомы Н, связанные с тем же атомом углерода, с которым связана группа ОН, значительно легче, чем в углеводородах, отрываются и соединяются с кислородом, образуя воду. При этом атом углерода, связанный с группой ОН, подвергается дальнейшему окислению (см. § 171).

Взаимное влияние атомов, непосредственно друг с другом не связанных, может передаваться на значительное расстояние по цепи атомов углерода и объясняется смещением плотности электронных облаков во всей молекуле под влиянием имеющихся в ней различных по электроотрицательности атомов или групп. Взаимное влияние может передаваться и через пространство, окружающее молекулу, - в результате перекрывания электронных облаков сближающихся атомов.

Тема: Основные положения теории строения органических соединений А. М. Бутлерова.

Теория химического строения органических соединений, выдвинутая А. М. Бутлеровым во второй половине прошлого века (1861 г.), была подтверждена работами многих ученых, в том числе учениками Бутлерова и им самим. Оказалось возможным на ее основе объяснить многие явления, до той поры не имевшие толкования: , гомологию, проявление атомами углерода четырехвалентности в органических веществах. Теория выполнила и свою прогностическую функцию: на ее основе ученые предсказывали существование неизвестных еще соединений, описывали свойства и открывали их. Так, в 1862–1864 гг. А. М. Бутлеров рассмотрел пропиловых, бутиловых и амиловых спиртов, определил число возможных изомеров и вывел формулы этих веществ. Существование их позднее было экспериментально доказано, причем некоторые из изомеров синтезировал сам Бутлеров.

В течение XX в. положения теории химического строения химических соединений были развиты на основе новых воззрений, распространившихся в науке: теории строения атома, теории химической связи, представлений о механизмах химических реакций. В настоящее время эта теория имеет универсальный характер, то есть справедлива не только для органических веществ, но и для неорганических.

Первое положение. Атомы в молекулах соединяются в определенном порядке в соответствии с их валентностью. Углерод во всех органических и в большинстве неорганических соединений четырехвалентен.

Очевидно, что последнюю часть первого положения теории легко объяснить тем, что в соединениях атомы углерода находятся в возбужденном состоянии:

атомы четырехвалентного углерода могут соединяться друг с другом, образуя различные цепи:

Порядок соединения атомов углерода в молекулах может быть различным и зависит от вида ковалентной химической связи между атомами углерода - одинарной или кратной (двойной и тройной):

Второе положение. Свойства веществ зависят не только от их качественного и количественного состава, но и от строения их молекул.

Это положение объясняет явление .

Вещества, имеющие одинаковый состав, но разное химическое или пространственное строение, а следовательно, и разные свойства, называют изомерами.

Основные виды :

Структурная изомерия, при которой вещества различаются порядком связи атомов в молекулах: углеродного скелета

положения кратных связей:

заместителей

положения функциональных групп

Третье положение. Свойства веществ зависят от взаимного влияния атомов в молекулах.

Например, в уксусной кислоте в реакцию со щелочью вступает только один из четырех атомов водорода. На основании этого можно предположить, что только один атом водорода связан с кислородом:

С другой стороны, из структурной формулы уксусной кислоты можно сделать вывод о наличии в ней одного подвижного атома водорода, то есть о ее одноосновности.

Основные направления развития теории строения химических соединений и ее значение.

Во времена А. М. Бутлерова в органической химии широко использовали

эмпирические (молекулярные) и структурные формулы. Последние отражают порядок соединения атомов в молекуле согласно их валентности, которая обозначается черточками.

Для простоты записи часто используют сокращенные структурные формулы, в которых черточками обозначают только связи между атомами углерода или углерода и кислорода.

И волокна, изделия из которых используют в технике, быту, медицине, сельском хозяйстве. Значение теории химического строения А. М. Бутлерова для органической химии можно сравнить со значением Периодического закона и Периодической системы химических элементов Д. И. Менделеева для неорганической химии. Недаром в обеих теориях так много общего в путях их становления, направлениях развития и общенаучном значении.