Какие физические свойства проявляют основания. Основания. Химические свойства и способы получения

3. Гидроксиды

Среди многоэлементных соединений важную группу составляют гидроксиды. Некоторые из них проявляют свойства оснований (основные гидроксиды) - NaOH , Ba (OH ) 2 и т.п.; другие проявляют свойства кислот (кислотные гидроксиды) - HNO 3 , H 3 PO 4 и другие. Существуют и амфотерные гидроксиды, способные в зависимости от условий проявлять как свойства оснований, так и свойства кислот - Zn (OH ) 2 , Al (OH ) 3 и т.п.

3.1. Классификация, получение и свойства оснований

Основаниями (основными гидроксидами) с позиции теории электролитической диссоциации являются вещества, диссоциирующие в растворах с образованием гидроксид-ионов ОН - .

По современной номенклатуре их принято называть гидроксидами элементов с указанием, если необходимо, валентности элемента (римскими цифрами в скобках): КОН - гидроксид калия, гидроксид натрия NaOH , гидроксид кальция Ca (OH ) 2 , гидроксид хрома (II ) - Cr (OH ) 2 , гидроксид хрома (III ) - Cr (OH ) 3 .

Гидроксиды металлов принято делить на две группы: растворимые в воде (образованные щелочными и щелочноземельными металлами - Li , Na , K , Cs , Rb , Fr , Ca , Sr , Ba и поэтому называемые щелочами) и нерастворимые в воде . Основное различие между ними заключается в том, что концентрация ионов ОН - в растворах щелочей достаточно высока, для нерастворимых же оснований она определяется растворимостью вещества и обычно очень мала. Тем не менее, небольшие равновесные концентрации иона ОН - даже в растворах нерастворимых оснований определяют свойства этого класса соединений.

По числу гидроксильных групп (кислотность) , способных замещаться на кислотный остаток, различают:

Однокислотные основания - KOH , NaOH ;

Двухкислотные основания - Fe (OH ) 2 , Ba (OH ) 2 ;

Трехкислотные основания - Al (OH ) 3 , Fe (OH ) 3 .

Получение оснований

1. Общим методом получения оснований является реакция обмена, с помощью которой могут быть получены как нерастворимые, так и растворимые основания:

CuSO 4 + 2KOH = Cu(OH) 2 ↓ + K 2 SO 4 ,

K 2 SO 4 + Ba(OH) 2 = 2KOH + BaCO 3 ↓ .

При получении этим методом растворимых оснований в осадок выпадает нерастворимая соль.

При получении нерастворимых в воде оснований, обладающих амфотерными свойствами, следует избегать избытка щелочи, так как может произойти растворение амфотерного основания, например,

AlCl 3 + 3KOH = Al(OH) 3 + 3KCl,

Al(OH) 3 + KOH = K.

В подобных случаях для получения гидроксидов используют гидроксид аммония, в котором амфотерные оксиды не растворяются:

AlCl 3 + 3NH 4 OH = Al(OH) 3 ↓ + 3NH 4 Cl.

Гидроксиды серебра, ртути настолько легко распадаются, что при попытке их получения обменной реакцией вместо гидроксидов выпадают оксиды:

2AgNO 3 + 2KOH = Ag 2 O ↓ + H 2 O + 2KNO 3 .

2. Щелочи в технике обычно получают электролизом водных растворов хлоридов:

2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2 .

(суммарная реакция электролиза)

Щелочи могут быть также получены взаимодействием щелочных и щелочноземельных металлов или их оксидов с водой:

2 Li + 2 H 2 O = 2 LiOH + H 2 ,

SrO + H 2 O = Sr (OH ) 2 .

Химические свойства оснований

1. Все нерастворимые в воде основания при нагревании разлагаются с образованием оксидов:

2 Fe (OH ) 3 = Fe 2 O 3 + 3 H 2 O ,

Ca (OH ) 2 = CaO + H 2 O .

2. Наиболее характерной реакцией оснований является их взаимодействие с кислотами - реакция нейтрализации. В нее вступают как щелочи, так и нерастворимые основания:

NaOH + HNO 3 = NaNO 3 + H 2 O ,

Cu(OH) 2 + H 2 SO 4 = CuSO 4 + 2H 2 O.

3. Щелочи взаимодействуют с кислотными и с амфотерными оксидами:

2KOH + CO 2 = K 2 CO 3 + H 2 O,

2NaOH + Al 2 O 3 = 2NaAlO 2 + H 2 O.

4. Основания могут вступать в реакцию с кислыми солями:

2NaHSO 3 + 2KOH = Na 2 SO 3 + K 2 SO 3 +2H 2 O,

Ca(HCO 3) 2 + Ba(OH) 2 = BaCO 3 ↓ + CaCO 3 + 2H 2 O.

Cu(OH) 2 + 2NaHSO 4 = CuSO 4 + Na 2 SO 4 +2H 2 O.

5. Необходимо особенно подчеркнуть способность растворов щелочей реагировать с некоторыми неметаллами (галогенами, серой, белым фосфором, кремнием):

2 NaOH + Cl 2 = NaCl + NaOCl + H 2 O (на холоду),

6 KOH + 3 Cl 2 = 5 KCl + KClO 3 + 3 H 2 O (при нагревании),

6KOH + 3S = K 2 SO 3 + 2K 2 S + 3H 2 O,

3KOH + 4P + 3H 2 O = PH 3 + 3KH 2 PO 2 ,

2NaOH + Si + H 2 O = Na 2 SiO 3 + 2H 2 .

6. Кроме того, концентрированные растворы щелочей при нагревании способны растворять также и некоторые металлы (те, соединения которых обладают амфотерными свойствами):

2Al + 2NaOH + 6H 2 O = 2Na + 3H 2 ,

Zn + 2KOH + 2H 2 O = K 2 + H 2 .

Растворы щелочей имеют рН > 7 (щелочная среда), изменяют окраску индикаторов (лакмус - синяя, фенолфталеин - фиолетовая).

М.В. Андрюxoва, Л.Н. Бopoдина


После прочтения статьи Вы сможете разделять вещества на соли, кислоты и основания. В статье описано, что такое pH раствора, какими общими свойствами обладают кислоты и основания.

Как металлы и неметаллы, кислоты и основания - это разделение веществ по схожим свойствам. Первая теория кислот и оснований принадлежала швецкому учёному Аррениусу. Кислота по Аррениусу - это класс веществ, которые в реакции с водой диссоциируют (распадаются), образовывая катион водорода H + . Основания Аррениуса в водном растворе образуют анионы OH - . Следующая теория в 1923 году была предложена учёными Бренстедом и Лоури. Теория Бренстеда-Лоури определяет кислотами вещества, способные в реакции отдавать протон (протоном в реакциях называют катион водорода). Основания, соответственно, - это вещества, способные принять протон в реакции. Актуальная на данный момент теория - теория Льюиса. Теория Льюиса определяет кислоты как молекулы или ионы, способные принимать электронные пары, тем самым формируя аддукты Льюиса (аддукт - это соединение, образующееся соединением двух реагентов без образования побочных продуктов).

В неорганической химии, как правило, под кислотой имеют ввиду кислоту Бренстеда-Лоури, то есть вещества, способные отдать протон. Если имеют ввиду определение кислоты по Льюису, то в тексте такую кислоту называют кислотой Льюиса. Данные правила справедливы для кислот и оснований.

Диссоциация

Диссоциация – это процесс распада вещества на ионы в растворах или расплавах. Например, диссоциация соляной кислоты - это распад HCl на H + и Cl - .

Свойства кислот и оснований

Основания, как правило, мыльные на ощупь, кислоты, в большинстве своём, имеют кислый вкус.

При реакции основания со многими катионами формируется осадок. При реакции кислоты с анионами, как правило, выделяется газ.

Часто используемые кислоты:
H 2 O, H 3 O + , CH 3 CO 2 H, H 2 SO 4 , HSO 4 − , HCl, CH 3 OH, NH 3
Часто используемые основания:
OH − , H 2 O, CH 3 CO 2 − , HSO 4 − , SO 4 2− , Cl −

Сильные и слабые кислоты и основания

Сильные кислоты

Такие кислоты, которые полностью диссоциируют в воде, производя катионы водорода H + и анионы. Пример сильной кислоты - соляная кислота HCl:

HCl (р-р) + H 2 O (ж) → H 3 O + (р-р) + Cl - (р-р)

Примеры сильных кислот: HCl, HBr, HF, HNO 3 , H 2 SO 4 , HClO 4

Список сильных кислот

  • HCl - соляная кислота
  • HBr - бромоводород
  • HI - йодоводород
  • HNO 3 - азотная кислота
  • HClO 4 - хлорная кислота
  • H 2 SO 4 - серная кислота

Слабые кислоты

Растворяются в воде только частично, например, HF:

HF (р-р) + H2O (ж) → H3O + (р-р) + F - (р-р) - в такой реакции более 90% кислоты не диссоциирует:
= < 0,01M для вещества 0,1М

Сильную и слабую кислоту можно различить измеряя проводимость растворов: проводимость зависит от количества ионов, чем сильнее кислота тем она более диссоциирована, поэтому чем сильнее кислота тем выше проводимость.

Список слабых кислот

  • HF фтороводородная
  • H 3 PO 4 фосфорная
  • H 2 SO 3 сернистая
  • H 2 S сероводородная
  • H 2 CO 3 угольная
  • H 2 SiO 3 кремниевая

Сильные основания

Сильные основания полностью диссоциируют в воде:

NaOH (р-р) + H 2 O ↔ NH 4

К сильным основаниям относятся гидроксиды металлов первой (алкалины, щелочные металы) и второй (алкалинотеррены, щёлочноземельные металлы) группы.

Список сильных оснований

  • NaOH гидроксид натрия (едкий натр)
  • KOH гидроксид калия (едкое кали)
  • LiOH гидроксид лития
  • Ba(OH) 2 гидроксид бария
  • Ca(OH) 2 гидроксид кальция (гашеная известь)

Слабые основания

В обратимой реакции в присутствии воды образует ионы OH - :

NH 3 (р-р) + H 2 O ↔ NH + 4 (р-р) + OH - (р-р)

Большинство слабых оснований - это анионы:

F - (р-р) + H 2 O ↔ HF (р-р) + OH - (р-р)

Список слабых оснований

  • Mg(OH) 2 гидроксид магния
  • Fe(OH) 2 гидроксид железа (II)
  • Zn(OH) 2 гидроксид цинка
  • NH 4 OH гидроксид аммония
  • Fe(OH) 3 гидроксид железа (III)

Реакции кислот и оснований

Сильная кислота и сильное основание

Такая реакция называется нейтрализацией: при количестве реагентов достаточном для полной диссоциации кислоты и основания, результирующий раствор будет нейтральным.

Пример:
H 3 O + + OH - ↔ 2H 2 O

Слабое основание и слабая кислота

Общий вид реакции:
Слабое основание (р-р) + H 2 O ↔ Слабая кислота (р-р) + OH - (р-р)

Сильное основание и слабая кислота

Основание полностью диссоциирует, кислота диссоциирует частично, результирующий раствор имеет слабые свойства основания:

HX (р-р) + OH - (р-р) ↔ H 2 O + X - (р-р)

Сильная кислота и слабое основание

Кислота полностью диссоциирует, основание диссоциирует не полностью:

Диссоциация воды

Диссоциация - это распад вещества на составляющие молекулы. Свойства кислоты или основания зависят от равновесия, которое присутствует в воде:

H 2 O + H 2 O ↔ H 3 O + (р-р) + OH - (р-р)
K c = / 2
Константа равновесия воды при t=25°: K c = 1.83⋅10 -6 , также имеет место следующее равенство: = 10 -14 , что называется константой диссоциации воды. Для чистой воды = = 10 -7 , откуда -lg = 7.0.

Данная величина (-lg) называется pH - потенциал водорода. Если pH < 7, то вещество имеет кислотные свойства, если pH > 7, то вещество имеет основные свойства.

Способы определения pH

Инструментальный метод

Специальный прибор pH-метр - устройство, трансформирующее концентрацию протонов в растворе в электрический сигнал.

Индикаторы

Вещество, которое изменяет цвет в некотором интервале значений pH в зависимости от кислотности раствора, используя несколько индикаторов можно добиться достаточно точного результата.

Соль

Соль - это ионное соединение образованное катионом отличным от H + и анионом отличным от O 2- . В слабом водном растворе соли полностью диссоциируют.

Что бы определить кислотно-щелочные свойства раствора соли , необходимо определить, какие ионы присутствуют в растворе и рассмотреть их свойства: нейтральные ионы, образованные из сильных кислот и оснований не влияют на pH: не отдают ионы ни H + , ни OH - в воде. Например, Cl - , NO - 3 , SO 2- 4 , Li + , Na + , K + .

Анионы, образованные из слабых кислот, проявляют щелочные свойства (F - , CH 3 COO - , CO 2- 3), катионов с щелочными свойствами не существует.

Все катионы кроме металлов первой и второй группы имеют кислотные свойства.

Буфферный раствор

Растворы, которые сохраняют уровень pH при добавлении небольшого количества сильной кислоты или сильного основания, в основном состоят из:

  • Смесь слабой кислоты, соответствующей соли и слабого основания
  • Слабое основание, соответствующая соль и сильная кислота

Для подготовки буфферного раствора определённой кислотности необходимо смешать слабую кислоту или основание с соответствующей солью, при этом необходимо учесть:

  • Интервал pH в котором буфферный раствор будет эффективен
  • Ёмкость раствора - количество сильной кислоты или сильного основания, которые можно добавить не повлияв на pH раствора
  • Не должно происходить нежелаемых реакций, которые могут изменить состав раствор

Тест:

1. Основания взаимодействуют с кислотами, образуя соль и воду:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O

2. С кислотными оксидами, образуя соль и воду:

Ca(OH) 2 + CO 2 = CaCO 3 + H 2 O

3. Щелочи реагируют с амфотерными оксидами и гидроксидами, образуя соль и воду:

2NaOH + Cr 2 O 3 = 2NaCrO 2 + H 2 O

KOH + Cr(OH) 3 = KCrO 2 + 2H 2 O

4. Щелочи взаимодействуют с растворимыми солями, образуя, либо слабое основание, либо осадок, либо газ:

2NaOH + NiCl 2 = Ni(OH) 2 ¯ + 2NaCl

основание

2KOH + (NH 4) 2 SO 4 = 2NH 3 ­ + 2H 2 O + K 2 SO 4

Ba(OH) 2 + Na 2 CO 3 = BaCO 3 ¯ + 2NaOH

5. Щелочи реагируют с некоторыми металлами, которым соответствуют амфотерные оксиды:

2NaOH + 2Al + 6H 2 O = 2Na + 3H 2 ­

6. Действие щелочи на индикатор:

OH - + фенолфталеин ® малиновый цвет

OH - + лакмус ® синий цвет

7. Разложение некоторых оснований при нагревании:

Сu(OH) 2 ® CuO + H 2 O

Амфотерные гидроксиды химические соединения, проявляющие свойства и оснований, и кислот. Амфотерные гидроксиды соответствуют амфотерным оксидам (см. п.3.1).

Амфотерные гидроксиды записывают, как правило, в форме основания, но их можно представить и в виде кислоты:

Zn(OH) 2 Û H 2 ZnO 2

основание к-та

Химические свойства амфотерных гидроксидов

1. Амфотерные гидроксиды взаимодействуют с кислотами и кислотными оксидами:

Be(OH) 2 + 2HCl = BeCl 2 + 2H 2 O

Be(OH) 2 + SO 3 = BeSO 4 + H 2 O

2. Взаимодействуют со щелочами и основными оксидами щелочных и щелочноземельных металлов:

Al(OH) 3 + NaOH = NaAlO 2 + 2H 2 O;

H 3 AlO 3 кислота метаалюминат натрия

(H 3 AlO 3 ® HAlO 2 + H 2 O)

2Al(OH) 3 + Na 2 O = 2NaAlO 2 + 3H 2 O

Все амфотерные гидроксиды являются слабыми электролитами

Соли

Соли – это сложные вещества, состоящие из ионов металла и кислотного остатка. Соли представляют собой продукты полного или частичного замещения ионов водорода ионами металла (или аммония) у кислот. Типы солей: средние (нормальные), кислые и основные.

Средние соли – это продукты полного замещения катионов водорода у кислот ионами металла (или аммония) :Na 2 CO 3 , NiSO 4 , NH 4 Cl и т.д.

Химические свойства средних солей

1. Соли взаимодействуют с кислотами, щелочами и другими солями, образуя, либо слабый электролит, либо осадок; либо газ:

Ba(NO 3) 2 + H 2 SO 4 = BaSO 4 ¯ + 2HNO 3

Na 2 SO 4 + Ba(OH) 2 = BaSO 4 ¯ + 2NaOH

CaCl 2 + 2AgNO 3 = 2AgCl¯ + Ca(NO 3) 2

2CH 3 COONa + H 2 SO 4 = Na 2 SO 4 + 2CH 3 COOH

NiSO 4 + 2KOH = Ni(OH) 2 ¯ + K 2 SO 4

основание

NH 4 NO 3 + NaOH = NH 3 ­ + H 2 O + NaNO 3

2. Соли взаимодействуют с более активными металлами. Более активный металл вытесняет менее активный из раствора соли (прил. 3).

Zn + CuSO 4 = ZnSO 4 + Cu

Кислые соли – это продукты неполного замещения катионов водорода у кислот ионами металла (или аммония): NaHCO 3 , NaH 2 PO 4 , Na 2 HPO 4 и т.д. Кислые соли могут быть образованы только многоосновными кислотами. Практически все кислые соли хорошо растворимы в воде.

Получение кислых солей и перевод их в средние

1. Кислые соли получают при взаимодействии избытка кислоты или кислотного оксида с основанием:

H 2 CO 3 + NaOH = NaHCO 3 + H 2 O

CO 2 + NaOH = NaHCO 3

2. При взаимодействии избытка кислоты с основным оксидом:

2H 2 CO 3 + CaO = Ca(HCO 3) 2 + H 2 O

3. Кислые соли получают из средних солей, добавляя кислоту:

· одноименную

Na 2 SO 3 + H 2 SO 3 = 2NaHSO 3 ;

Na 2 SO 3 + HCl = NaHSO 3 + NaCl

4. Кислые соли переводят в средние, используя щелочь:

NaHCO 3 + NaOH = Na 2 CO 3 + H 2 O

Основные соли – это продукты неполного замещения гидроксогрупп (ОН - ) основания кислотным остатком: MgOHCl, AlOHSO 4 и т.д. Основные соли могут быть образованы только слабыми основаниями многовалентных металлов. Эти соли, как правило, труднорастворимы.

Получение основных солей и перевод их в средние

1. Основные соли получают при взаимодействии избытка основания с кислотой или кислотным оксидом:

Mg(OH) 2 + HCl = MgOHCl¯ + H 2 O

гидроксо-

хлорид магния

Fe(OH) 3 + SO 3 = FeOHSO 4 ¯ + H 2 O

гидроксо-

сульфат железа (III)

2. Основные соли образуются из средней соли при добавлении недостатка щелочи:

Fe 2 (SO 4) 3 + 2NaOH = 2FeOHSO 4 + Na 2 SO 4

3. Основные соли переводят в средние, добавляя кислоту (лучше ту, которая соответствует соли):

MgOHCl + HCl = MgCl 2 + H 2 O

2MgOHCl + H 2 SO 4 = MgCl 2 +MgSO 4 + 2H 2 O


ЭЛЕКТРОЛИТЫ

Электролиты – это вещества, распадающиеся на ионы в растворе под влиянием полярных молекул растворителя (Н 2 О). По способности к диссоциации (распаду на ионы) электролиты условно делят на сильные и слабые. Сильные электролиты диссоциируют практически полностью (в разбавленных растворах), а слабые распадаются на ионы лишь частично.

К сильным электролитам относятся:

· сильные кислоты (см. с. 20);

· сильные основания – щелочи (см. с. 22);

· практически все растворимые соли.

К слабым электролитам относятся:

· слабые кислоты (см. с. 20);

· основания – не щелочи;

Одной из основных характеристик слабого электролита является константа диссоциации К . Например, для одноосновной кислоты,

HA Û H + + A - ,

где, – равновесная концентрация ионов H + ;

– равновесная концентрация анионов кислоты А - ;

– равновесная концентрация молекул кислоты,

Или для слабого основания,

MOH Û M + + OH - ,

,

где, – равновесная концентрация катионов M + ;

– равновесная концентрация гидроксид ионов ОН - ;

– равновесная концентрация молекул слабого основания.

Константы диссоциации некоторых слабых электролитов (при t = 25°С)

Вещество К Вещество К
HCOOH K = 1,8×10 -4 H 3 PO 4 K 1 = 7,5×10 -3
CH 3 COOH K = 1,8×10 -5 K 2 = 6,3×10 -8
HCN K = 7,9×10 -10 K 3 = 1,3×10 -12
H 2 CO 3 K 1 = 4,4×10 -7 HClO K = 2,9×10 -8
K 2 = 4,8×10 -11 H 3 BO 3 K 1 = 5,8×10 -10
HF K = 6,6×10 -4 K 2 = 1,8×10 -13
HNO 2 K = 4,0×10 -4 K 3 = 1,6×10 -14
H 2 SO 3 K 1 = 1,7×10 -2 H 2 O K = 1,8×10 -16
K 2 = 6,3×10 -8 NH 3 × H 2 O K = 1,8×10 -5
H 2 S K 1 = 1,1×10 -7 Al(OH) 3 K 3 = 1,4×10 -9
K 2 = 1,0×10 -14 Zn(OH) 2 K 1 = 4,4×10 -5
H 2 SiO 3 K 1 = 1,3×10 -10 K 2 = 1,5×10 -9
K 2 = 1,6×10 -12 Cd(OH) 2 K 2 = 5,0×10 -3
Fe(OH) 2 K 2 = 1,3×10 -4 Cr(OH) 3 K 3 = 1,0×10 -10
Fe(OH) 3 K 2 = 1,8×10 -11 Ag(OH) K = 1,1×10 -4
K 3 = 1,3×10 -12 Pb(OH) 2 K 1 = 9,6×10 -4
Cu(OH) 2 K 2 = 3,4×10 -7 K 2 = 3,0×10 -8
Ni(OH) 2 K 2 = 2,5×10 -5