Введение, анизотропность - общие свойства кристаллов. Анизотропия - это что такое? Определение и применение

Анизотропия (от др. uреч. ἄνισος — неравный и τρόπος — направление) - зависимость свойств материала (например, механических: предела прочности, относительного удлинения, твердости, износостойкости и др.) от направления внутри этого материала. Если материал изотропен, то его свойства одинаковы во всех направлениях.

Металлография тесно связана с вопросами анизотропии. По некоторым свойствам материал может быть изотропен, по другим — анизотропен. Материалы могут отличаться степенью анизотропии. Вопрос анизотропности материала связан с выбором направления внутри этого материала. В одном направлении материал может рассматриваться как анизотропный, в других - как изотропный. Анизотропия в металлографии может рассматриваться на разных масштабных уровнях. Например, на микроуровне (внутри зерна) материал может быть анизотропен, а на другом - изотропен (например в объеме образца).

Анизотропия может быть разделена на естественную и искусственную.

Примером естественной анизотропии на микроуровне является анизотропия элементарной кристаллической ячейки. Если рассматривать отдельные направления внутри элементарной ячейки, то проявляется анизотропия: различные направления имеют различные свойства на масштабном уровне, определяющемся размерами кристаллической решетки. В качестве примера можно привести монокристалл медного купороса (рис.1). Степень анизотропии кристаллов кубической сингонии гораздо выше. Если рассматривать направления осей x, у и z, то монокристалл поваренной соли изотропен (рис.1б). Овализованный кристалл поваренной соли имеет изотропную форму.

Рисунок 1. Гидратированные кристаллы медного купороса (а); естественный и овализованный кристаллы хлорида натрия (б).

Плотность и удельная теплоёмкость у всех кристаллов не зависят от направления. Анизотропия остальных физических свойств кристаллов тесно связана с их симметрией и проявляется тем сильнее, чем ниже симметрия. Например, усилие сдвига, скорость роста или растворения кристалла зависят от направления. Пример анизотропной структуры электролитического покрытия меди представлен на рис. 2. Кристаллиты покрытия растут на подложке в определенном направлении и все они ориентированы в пространстве одинаково. Скорость роста кристаллов максимальна в направлении, перпендикулярном подложке.

Рисунок 2. Структура электролитического покрытия меди.

Молекулярные кристаллы (белки или полимеры) также являются анизотропными объектами. Изделия, созданные на основе полимеров могут быть как анизотропными (например искусственные нити для производства тканей), так и изотропными (изделия, получаемые при горячем формообразовании полимерных порошков). Сам порошок (рис.3) можно считать изотропным.

Рисунок 3. Порошок политетрафторэтилена ; освещение по методу темного поля .

Помимо белков, естественная анизотропия свойственна другим материалам биологического происхождения. Например: слюда, костные и мышечные ткани человека и животных, древесина и листья, трава и т.д.
Анизотропия материалов связана либо с естественной анизотропией материала, либо создается искусственно для придания материалу определенных свойств. Поликристаллические материалы (металлы, сплавы) принято считать изотропными, поскольку кристаллиты, составляющие металл, ориентированы хаотично относительно внешних и внутренних направлений в материале. Анизотропия в металлических материалах создается искусственно. Это, например, специальные условия кристаллизации (рис.4) (направленный теплоотвод). На рис.4а показана структура литой меди; кристаллиты вытянуты в направлении теплоотвода. Структура на рис.4б не имеет направленности. Анизитропную структуру можно получить при деформации - прокаткой и волочением. Например, на рис.5а показана структура прокатанной стали. Видны полосы перлита (темные), вытянутые вдоль направления деформации. Структура, показанная на рис.5б тоже состоит из перлита и феррита, но такую структуру можно считать изотропной, потому что феррит и перлит равномерно распределены в объеме стали. Сам перлит анизотропен, потому что имеет пластинчатое строение (в противоположность зернистому перлиту , который является изотропным).

Анизотропия, созданная тпластической деформацией, сохраняется в изделии или материале после прекращения воздействия и определяет комплекс его физико-механических свойств. Например, после холодной прокатки на 90% и отжига при 800 0 С медь имеет различное относительное удлинение: вдоль направления деформации - 40%, под углом 45 0 к направлению деформации - 75%.

Рисунок 4. Макроструктура литья: а - анизотропия макроструктуры меди за счет направленного теплоотвода; б - изотропная структура меди , формирующаяся при равномерном теплоотводе.

Рисунок 5. Анизотропия структуры углеродистой стали, созданная холодной прокаткой (а), и однородная структура, полученная нормализацией (б).

Композиционные материалы представляют собой искусственные анизотропные материалы, созданные, как правило, из двух и более материалов, часто различной природы. Композиционный материал состоит из армирующего прочного материала (как правило анизотропного) и связующего изотропного вещества с более низкими свойствами. Часто в качестве армирующего элемента используются высокопрочные волокна - графитовое или борное волокно, стекловолокно и т.д. (рис.6 а). Понятно, что в продольном сечении материал можно рассматривать как анизотропный (рис. 6 б), в поперечном сечении - как изотропный, т.к. сечение волокна сферическое (рис. 6в). Из элементарных соображений понятно, что свойства композиционного материала вдоль волокна будут существенно отличаться от свойств в поперечном направлении. Этот случай анизотропии представляет собой частный случай анизотропии под названием ортотропи я (от др. греч. ὀρθός — прямой и τρόπος — направление) —различие свойств материала по взаимно перпендикулярным направлениям.

Рисунок 6. Анизотропия композиционных материалов: а - борное волокно ; б - волокно в составе композита, продольное сечение материала; в - поперечное сечение материала.

АНИЗОТРОПИЯ (anisotropia ; греческий anisos - неравный и tropos - направление) - неоднородность некоторых физических свойств вещества по различным направлениям.

Различают анизотропию оптическую, механическую и электрическую.

Оптическая анизотропия на уровне макромолекул наиболее отчетливо проявляется в дихроизме и гипохромном эффекте белков и нуклеиновых кислот. В основе оптической анизотропии макромолекул лежит упаковка их в упорядоченную спиральную конфигурацию. Характерной оптической анизотропией обладают мышечные волокна, внутри которых с помощью метода двойного лучепреломления (см.) выявляются так наз. анизотропные диски.

Механическая анизотропия характерна для элементов опорно-двигательного аппарата, в частности кости (см. Кость), и выражается в различной механической прочности костной ткани в продольном и поперечном направлениях. Механическую анизотропию кости можно наблюдать визуально с помощью прозрачной объемной пластмассовой модели при приложении к ней механического напряжения, сравнимого по величине и направлению с действующим на кость фактором в условиях организма (метод фотоупругости).

Электрическая анизотропия живых тканей определяется пассивными электрическими свойствами (электрическим сопротивлением и электрической емкостью) клеточных мембран. Наличие электрической анизотропии иллюстрируется тем фактом, что удельный электрический импеданс (см.) живой мышцы, измеренный в продольном направлении, значительно меньше поперечного. Объяснение заключается в том, что электрический ток пересекает различное количество мембран на единицу длины в зависимости от направления (продольного или поперечного). Электрическая анизотропия тканей используется в методе вектор-электрокардиографии.

Анизотропные свойства живых систем характерны для всех уровней структурной организации от биомакромолекул до целого организма.

Анизотропия может быть также естественной или искусственной. Естественную анизотропию обнаруживают некоторые структуры нормальных животных тканей(мышечные,коллагеновые,эластические волокна, кость,фибрин, холестерин и др.), дающие при исследовании в поляризованном свете двойное лучепреломление. Ряд веществ, появляющихся в патологических условиях (гиалин, амилоид и др.), также обладает свойством анизотропии и дихроизма.

Искусственная анизотропия возникает вследствие механических деформаций, химических воздействий и т. д.

Особое место в патологии занимает так называемое анизотропное ожирение - отложения в тканях холестерина или его соединений в результате нарушения липоидного (холестеринового) обмена. Вокруг таких отложений в соединительной ткани возникает специфическая реакция, подобная реакции на инородное тело.

В. В. Серов; В. Ф. Антонов (биофиз.).

Введение

Кристаллы - это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений составляющих вещество частиц.

В основе физики твердого тела лежит представление о кристалличности вещества. Все теории физических свойств кристаллических твердых тел основываются на представлении о совершенной периодичности кристаллических решеток. Используя это представление и вытекающие из него положения о симметрии и анизотропии кристаллов, физики разработали теорию электронной структуры твердых тел. Эта теория позволяет дать строгую классификацию твердых тел, определяя их тип и макроскопические свойства. Однако она позволяет классифицировать только известные, исследованные вещества и не позволяет предопределить состав и структуру новых сложных веществ, которые обладали бы заданным комплексом свойств. Эта последняя задача является особо важной для практики, так как ее решение позволило бы создавать материалы по заказу для каждого конкретного случая. При соответствующих внешних условиях свойства кристаллических веществ определяются их химическим составом и типом кристаллической решетки. Изучение зависимости свойств вещества от его химического состава и кристаллической структуры обычно разбивается на следующие отдельные этапы 1) общее изучение кристаллов и кристаллического состояния вещества 2) построение теории химических связей и ее применение к изучению различных классов кристаллических веществ 3) изучение общих закономерностей изменения структуры кристаллических веществ при изменении их химического состава 4) установление правил, позволяющих предопределять химический состав и структуру веществ, обладающих определенным комплексом физических свойств.

Основные свойства кристаллов - анизотропность, однородность, способность к самоогоранению и наличие постоянной температуры плавления.

Анизотропность

кристалл анизотропность самоогоранение

Анизотропность - выражается она в том, что физические свойства кристаллов неодинаковы по разным направлениям. К физическим величинам можно отнести такие параметры - прочность, твердость, теплопроводность, скорость распространения света, электропроводность. Характерным примером вещества с ярко выраженной анизотропностью является слюда. Кристаллические пластинки слюды - легко расщепляются лишь по плоскостям. В поперечных же направлениях расщепить пластинки этого минерала значительно труднее.

Примером анизотропности-является кристалл минерала дистена. В продольном направлении, у дистена твердость равняется 4,5, в поперечном - 6. Минерал дистен (Al 2 O), отличающийся резко различной твердостью по неодинаковым направлениям. Вдоль удлинения кристаллы дистена легко царапаются лезвием ножа, в направлении перпендикулярном удлинению, нож не оставляет никаких следов.

Рис. 1

Минерал кордиерит (Mg 2 Al 3 ). Минерал, алюмосиликат магния и железа. Кристалл кордиерита по трем различным направлениям представляется различно окрашенным. Если из такого кристалла вырезать куб с гранями, то можно заметить следующее. Перпендикулярными этим направлениям, то по диагонали куба (от вершины к вершине наблюдается серовато-синяя окраска, в направлении вертикальном - индигово-синяя окраска, и в направлении поперек куба - желтая.

Рис. 2

Кристалл поваренной соли, которая имеет форму куба. Из такого кристалла можно вырезать стерженьки по различным направлениям. Три из них перпендикулярно граням куба, параллельно диагонали


Каждый из примеров исключительны по своей характерности. Но путём точных исследований, ученым пришли к такому выводу, что все кристаллы в том или ином отношении обладают анизотропностью. Так же твёрдые аморфные образования могут быть и однородными и даже анизотропными (анизотропность, к примеру, может наблюдаться при растягивании или сдавливании стёкол), но аморфные тела не могут сами по себе принимать многогранную форму, ни при каких условиях.

Рис. 3

В качестве примера (рис. 1) анизотропных свойств кристаллических веществ прежде всего следует упомянуть про механическую анизотропность, которая заключается в следующем. Все кристаллические вещества раскалываются не одинаково вдоль различных направлений (слюда, гипс, графит и др.). Аморфные же вещества-во всех направлениях раскалываются одинаково, потому что аморфность характеризуются изотропностью (равносвойственностью) - физические свойства по всем направлениям проявляются одинаково.

Анизотропию теплопроводности легко пронаблюдать на следующем простом опыте. На грань кристалла кварца нанести слой цветного воска и поднести к центру грани накаленную на спиртовке иголку. Образовавшийся талый круг воска вокруг иголки примет форму эллипса на грани призмы или же форму неправильного треугольника на одной из граней головки кристалла. На изотропном же веществе, например, стекле - форма талого воска всегда будет правильным кругом.

Анизотропность проявляется и в том, что при взаимодействии на кристалл какого-либо растворителя, скорость химических реакций различна по различным направлениям. В результате каждый кристалл при растворении в итоге приобретает свои характерные формы.

В конечном итоге причиной анизотропности кристаллов - является то, что при упорядоченном расположении ионов, молекул или атомов силы взаимодействия между ними и межатомные расстояния (а также некоторые не связанные с ними прямо величины, например, электропроводность или поляризуемость) оказываются неодинаковыми по различным направлениям. Причиной анизотропии молекулярного кристалла может быть также асимметрия его молекул, хотелось бы отметить что все аминокислоты, кроме простейшей - глицина, асимметричны.

Любая частичка кристалла имеет строго определенный химический состав. Это свойство кристаллических веществ используется для получения химически чистых веществ. Например, при замораживании морской воды она становится пресной и пригодной для питья. Теперь угадайте, морской лед пресный или соленый?

АНИЗОТРОПИЯ (от греческого ανισος - неравный и...тропия), зависимость физических свойств вещества (механических, электрических, магнитных, оптических) от направления (смотри Магнитная анизотропия, Оптическая анизотропия, а также Анизотропная среда).

Анизотропия — наиболее характерная особенность кристаллов, связанная с их симметрией и проявляющаяся тем сильнее, чем ниже симметрия кристаллов. При нагревании шара из изотропного вещества происходит его равномерное расширение по всем направлениям, то есть он остаётся шаром. Шар из кристаллического вещества при нагревании изменяет свою форму (рисунок). Не все свойства кристаллов анизотропны; например, их плотность и удельная теплоёмкость не зависят от направления (то есть изотропны).

Изменение формы шара из кристаллического вещества (изображён пунктиром) при нагревании: а - шар расширяется в одном направлении и сжимается в другом, перпендикулярном ему; 6 - шар неравномерно расширяется в обоих направлениях.

Анизотропия механических свойств кристаллов состоит в различии твёрдости, вязкости, упругости в разных направлениях. Анизотропию упругих свойств оценивают по главным значениям модулей упругости. Кубические монокристаллы характеризуются тремя главными значениями модулей упругости (вдоль трёх осей куба). Для кристаллов более низкой симметрии необходимо знание большего числа компонент модулей упругости. Анизотропию многих свойств кристалла, в том числе коэффициентов линейного теплового расширения и электрического сопротивления, характеризуют значениями соответствующих констант вдоль главной оси симметрии и перпендикулярно ей.

Анизотропные свойства кристаллов математически описываются векторами и тензорами, в отличие от изотропных свойств, описываемых скалярными величинами. Для задания векторной величины, например, средней намагниченности кристалла, необходимо знание трёх проекций вектора на оси координат. Электрическая проводимость, теплопроводность, диэлектрическая и магнитная проницаемости описываются симметричными тензорами 2-го ранга (необходимо знание 6 компонент).

Причиной анизотропии кристаллов является упорядоченное расположение частиц в них, при котором расстояние между соседними частицами, а, следовательно, и силы связи между ними различны в разных направлениях. Анизотропия жидких кристаллов связана с асимметрией и определённой ориентацией самих молекул. Поликристаллические материалы, состоящие из большого числа случайно ориентированных мелких монокристаллов, изотропны. Анизотропия свойств в них может быть искусственно вызвана внешним воздействием, например, отжигом, прокаткой и т.п. (смотри Текстура).

Анизотропия широко распространена в природе. Например, анизотропия является диагностическим признаком ряда минералов, многие из которых имеют различную твёрдость по разным направлениям (кианит, алмаз), обладают плеохроизмом (кордиерит, турмалин), спайностью (слюды), двойным лучепреломлением (исландский шпат) и др. С анизотропией связана возможность обработки алмаза алмазным инструментом и т.п.

Смотри также статью Минерал.

Лит.: Современная кристаллография. М., 1981. Т. 1: Симметрия кристаллов.

Анизотропия (от греч. ánisos - неравный и tróроs - направление), зависимость физических свойств вещества (механических, тепловых, электрических, магнитных, оптических) от направления (в противоположность изотропии - независимости свойств от направления). Примеры Анизотропия : пластинка слюды легко расщепляется на тонкие листочки только вдоль определённой плоскости (параллельно этой плоскости силы сцепления между частицами слюды наименьшие); мясо легче режется вдоль волокон, хлопчатобумажная ткань легко разрывается вдоль нитки (в этих направлениях прочность ткани наименьшая).

Естественная Анизотропия - наиболее характерная особенность кристаллов. Именно потому, что скорости роста кристаллов в разных направлениях различны, кристаллы вырастают в виде правильных многогранников: шестиугольные призмы кварца , кубики каменной соли, восьмиугольные кристаллы алмаза , разнообразные, но всегда шестиугольные звёздочки снежинок. Анизотропны, однако, не все свойства кристаллов. Плотность и удельная теплоёмкость у всех кристаллов не зависят от направления. Анизотропия остальных физических свойств кристаллов тесно связана с их симметрией и проявляется тем сильнее, чем ниже симметрия кристаллов .

При нагревании шара из изотропного вещества он расширяется во все стороны равномерно, т. е. остаётся шаром. Кристаллический шар при нагревании изменит свою форму, например превратится в эллипсоид (рис. 1 , а). Может случиться, что при нагревании шар будет расширяться в одном направлении и сжиматься в другом (поперечном к первому, рис. 1 , б). Температурные коэффициенты линейного расширения вдоль главной оси симметрии кристалла (a //) и перпендикулярно этой оси (a ^) различны по величине и знаку.

Таблица 1. - Температурные коэффициенты линейного расширения некоторых кристаллов вдоль главной оси симметрии кристалла и в перпендикулярном ей направлении

Аналогично различаются удельные электрические сопротивления кристаллов вдоль главной оси симметрии r // и перпендикулярно ей r ^ .

Таблица 2. - Удельное электрическое сопротивление некоторых кристаллов вдоль главной оси симметрии и перпендикулярно ей (1 ом·см = 0,01 ом·м )

При распространении света в прозрачных кристаллах (кроме кристаллов с кубической решёткой) свет испытывает двойное лучепреломление и поляризуется различно в разных направлениях (оптическая Анизотропия ). В кристаллах с гексагональной, тригональной и тетрагональной решётками (например, в кристаллах кварца , рубина и кальцита ) двойное лучепреломление максимально в направлении, перпендикулярном к главной оси симметрии, и отсутствует вдоль этой оси. Скорость распространения света в кристалле v или показатель преломления кристалла n различны в различных направлениях. Например, у кальцита показатели преломления видимого света вдоль оси симметрии n // и перпендикулярно ей n ^ равны: n // = 1,64 и n ^ = 1,58; у кварца: n // = 1,53, n ^ = 1,54.

Механическая Анизотропия состоит в различии механических свойств - прочности, твёрдости, вязкости, упругости - в разных направлениях. Количественно упругую Анизотропия оценивают по максимальному различию модулей упругости . Так, для поликристаллических металлов с кубической решёткой отношение модулей упругости вдоль ребра и вдоль диагонали куба для железа равно 2,5, для свинца 3,85, для бета-латуни 8,7. Кубические монокристаллы характеризуются тремя главными значениями модулей упругости (табл. 3).

Таблица 3. - Главные значения модулей упругости некоторых кубических кристаллов

Математически анизотропные свойства кристаллов характеризуются векторами и тензорами , в отличие от изотропных свойств (например, плотности), которые описываются скалярными величинами. Например, коэффициент пироэлектрического эффекта (см. Пироэлектричество ) является вектором. Электрическое сопротивление, диэлектрическая проницаемость , магнитная проницаемость и теплопроводность - тензоры второго ранга, коэффициент пьезоэлектрического эффекта (см. Пьезоэлектричество ) - тензор третьего ранга, упругость - тензор четвёртого ранга. Анизотропия графически изображают с помощью указательных поверхностей (индикатрисс): из одной точки во всех направлениях откладывают отрезки, соответствующие константе в этом направлении. Концы этих отрезков образуют указательную поверхность (рис. 2-5 ).

Поликристаллические материалы (металлы , сплавы ), состоящие из множества кристаллических зёрен (кристаллитов ), ориентированных произвольно, в целом изотропны или почти изотропны. Анизотропия свойств поликристаллического материала проявляется, если в результате обработки (отжига , прокатки и т. п.) в нём создана преимущественная ориентация отдельных кристаллитов в каком-либо направлении (текстура). Так, при прокатке листовой стали зёрна металла ориентируются в направлении прокатки, в результате чего возникает Анизотропия (главным образом механических свойств), например для прокатанных сталей предел текучести, вязкость, удлинение при разрыве, вдоль и поперёк направления проката различаются на 15-20% (до 65%).

Причиной естественной Анизотропия является упорядоченное расположение частиц в кристаллах, при котором расстояние между соседними частицами, а следовательно, и силы связи между ними различны в разных направлениях (см. Кристаллы ). Анизотропия может быть вызвана также асимметрией и определённой ориентацией самих молекул. Этим объясняется естественная Анизотропия некоторых жидкостей, особенно Анизотропия жидких кристаллов . В последних наблюдается двойное лучепреломление света, хотя большинство других их свойств изотропно, как у обычных жидкостей.

Анизотропия наблюдается также и в определённых некристаллических веществах, у которых существует естественная или искусственная текстура (древесина и т. п.). Например, фанера или прессованная древесина вследствие слоистости строения могут обладать пьезоэлектрическими свойствами, как кристаллы. Комбинируя стеклянное волокно с пластмассами, удаётся получить анизотропный листовой материал с прочностью на разрыв до 100 кгс/мм 2 . Искусственную Анизотропия можно также получить, создавая заданное распределение механических напряжений в первоначально изотропном материале. Например, при закалке стекла можно получить в нём Анизотропия , которая влечёт за собой упрочнение стекла.

Искусственная оптическая Анизотропия возникает в кристаллах и в изотропных средах под действием электрического поля (см. Электрооптический эффект в кристаллах, Керра явление в жидкостях), магнитного поля (см. Коттон-Мутона эффект ), механического воздействия (см. фотоупругость ).

М. П. Шаскольская.

Анизотропия широко распространена также в живой природе. Оптическая Анизотропия обнаруживается в некоторых животных тканях (мышечной, костной). Так, миофибриллы поперечно исчерченных мышечных волокон при микроскопии кажутся состоящими из светлых и тёмных участков. При исследовании в поляризованном свете эти тёмные диски, как и гладкие мышцы и некоторые структуры костной ткани, обнаруживают двойное лучепреломление, т. е. они анизотропны.

В ботанике Анизотропия называется способность разных органов одного и того же растения принимать различные положения при одинаковых воздействиях факторов внешней среды. Например, при одностороннем освещении верхушки побегов изгибаются к свету, а листовые пластинки располагаются перпендикулярно к направлению лучей.

Рис. 4. Сечения поверхности модуля кручений (а) и модуля Юнга (б) кристалла кварца; сечение поверхности пьезоэлектрического коэффициента в кварце (в).

Статья про слово "Анизотропия " в Большой Советской Энциклопедии была прочитана 21507 раз