Мутационная теория хуго де фриза. Основные положения мутационной теории


Мутационная изменчивость

Мутации – это наследственные изменения генотипического материала. Они характеризуются как редкие, случайные, ненаправленные события. Большая часть мутаций приводит к различным нарушениям нормального развития, некоторые из них летальны, однако вместе с тем многие мутации являются исходным материалом для естественного отбора и биологической эволюции.

Частота мутаций возрастает под действием определенных факторов – мутагенов, способных изменять материал наследственности. В зависимости от их природы мутагены делятся на физические (ионизирующее излучение, УФ-излучение и др.), химические (большое число различных соединений), биологические (вирусы, мобильные генетические элементы, некоторые ферменты). Весьма условно деление мутагенов на эндогенные и экзогенные. Так, ионизирующее излучение, помимо первичного повреждения ДНК, образует в клетке нестабильные ионы (свободные радикалы), способные вторично вызывать повреждения генетического материала. Многие физические и химические мутагены являются также канцерогенами, т.е. индуцируют злокачественный рост клеток.

Частота мутаций подчиняется распределению Пуассона, применяемому в биометрии, когда вероятность отдельного события очень мала, а выборка, в которой может возникнуть событие, велика. Вероятность мутаций в отдельном гене довольно низкая, однако число генов в организме велико, а в генофонде популяции – огромно.

В литературе можно встретить различные мутации: по проявлению в гетерозиготе (доминантные, рецессивные), по ионизирующему фактору (спонтанные, индуцированные), по локализации (генеративные, соматические), по фенотипическому проявлению (биохимические, морфологические, поведенческие, летальные и др.).

Классифицируются мутации по характеру изменения генома. По этому показателю выделяют 4 группы мутаций.

Генные – изменения нуклеотидного состава ДНК отдельных генов.

Хромосомные (аберрации) – изменения структуры хромосом.

Геномные – изменения числа хромосом.

Цитоплазматические – изменения неядерных генов.

Мутационная теория

Мутационная теория, или, правильнее, теория мутаций, составляет одну из основ генетики. Она зародилась вскоре после первооткрытия законов Г. Менделя в трудах Г. Де Фриза (1901-1903). Еще раньше к представлениям о скачкообразном изменении наследственных свойств пришел русский ботаник С.И. Коржинский (1899) в своем труде «Гетерогенезис и эволюция». Справедливо говорить о мутационной теории Корженевского – Де Фриза, посвятившего большую часть жизни изучению проблемы мутационной изменчивости растений.

На первых порах мутационная теория всецело сосредоточилась на фенотипическом проявлении наследственных изменений, практически не занимаясь механизмом их проявления. В соответствии с определением Г. Де Фриза мутация представляет собой явление скачкообразного, прерывистого изменения наследственного признака. До сих пор, несмотря на многочисленные попытки, не существует краткого определения мутации, лучшего, чем дал Г. Де Фриз, хотя и оно не свободно от недостатков.

Основные положения мутационной теории Г. Де Фриза сводятся к следующему:

1. Мутации возникают внезапно как дискретные изменения признаков.

2. Новые формы устойчивы.

3. В отличие от ненаследственных изменений мутации не образуют непрерывных рядов, не группируются вокруг какого-либо среднего типа. Они представляют собой качественные изменения.

4. Мутации проявляются по-разному и могут быть как полезными, так и вредными.

5. Вероятность обнаружения мутации зависит от числа исследованных особей.

6. Сходные мутации могут возникать неоднократно.

Как и многие генетики раннего периода, Г. Де Фриз ошибочно считал, что мутации могут сразу давать начало новым видам, т.е. минуя естественный отбор.

Г. Де Фриз создал свою мутационную теорию на основе экспериментов с различными видами Oenothera. В действительности он не получил мутаций, а наблюдал результат комбинативной изменчивости, поскольку формы, с которыми он работал, оказались сложными гетерозиготами по транслокации.

Честь строгого доказательства возникновения мутаций принадлежит В. Иогансену, изучавшему наследование в чистых (самоопыляющихся) линиях фасоли и ячменя. Полученный им результат касался количественного признака – массы семян. Мерные значения таких признаков обязательно варьируют, распределяясь вокруг некой средней величины. Мутационное изменение подобных признаков и обнаружил В. Иоганнсен (1908-1913). Сам этот факт уже ставит одно из положений Г. Де Фриза (пункт 3, мутационной теории Г. Де Фриза).

Так или иначе, но гипотеза о возможности скачкообразных наследственных изменений – мутаций, которую на рубеже столетий обсуждали многие генетики (в том числе У. Бэтсон), получила экспериментальное подтверждение.

Крупнейшим обобщением работ по изучению изменчивости в начале XX в. стал закон гомологических рядов в наследственной изменчивости Н.И. Вавилова, который он сформулировал в 1920 г. в докладе на III Всероссийском селекционном съезде в Саратове. Согласно этому закону близким видам и родом организмов свойственны сходные ряды наследственной изменчивости. Чем ближе таксономически рассматриваемые организмы, тем больше сходство наблюдается в ряду (спектре) их изменчивости. Справедливость этого закона Н.И. Вавилов проиллюстрировал на огромном ботаническом материале.

Закон Н.И. Вавилова находит подтверждение в изучении изменчивости животных и микроорганизмов и не только на уровне целых организмов, но и отдельных структур. Очевидно, что закон Н.И. Вавилова стоит в ряду научных достижений, приведших к современным представлениям об универсальности многих биологических структур и функций.

Закон Н.И. Вавилова имеет большое значение для селекционной практики, поскольку прогнозирует поиск определенных форм культурных растений и животных. Зная характер изменчивости одного или нескольких близких видов, можно целенаправленно искать формы, еще не известные у данного организма, но уже открытые у его таксономических родственников.

Классификация мутаций

Трудности определения понятий «мутация» лучше всего иллюстрирует классификация ее типов.

Существует несколько принципов такой классификации.

А. По характеру изменения генома:

1. Геномные мутации – изменение числа хромосом.

2. Хромосомные мутации, или хромосомные перестройки, – изменение структуры хромосом.

3. Генные мутации – изменение генов.

Б. По проявлению в гетерозиготе:

1. Доминантные мутации.

2. Рецессивные мутации.

В. По уклонению от нормы или так называемого дикого типа:

1. Прямы мутации.

2. Реверсии. Иногда говорят об обратных мутациях, однако очевидно, что они представляют собой только часть реверсий, поскольку в действительности широко распространены так называемые супрессорные мутации.

Г. В зависимости от причин, вызывающие мутации:

1. Спонтанные, возникающие без видимой причины, т.е. без каких-либо индуцирующих воздействий со стороны экспериментатора.

2. Индуцированные мутации.

Только эти четыре способа классификации изменений генетического материала носят достаточно строгий характер и имеют универсальное значение. Каждый и подходов в этих способах классификации отражает некоторую существенную сторону возникновения либо проявления мутаций у любых организмов: эукариот, прокариот и их вирусов.

Существуют и более частные подходы к классификации мутаций:

Д. По локализации в клетке:

1. Ядерные.

2. Цитоплазматические. В этом случае обычно подразумевают мутации неядерных генов.

Е. По отношению к возможности наследования:

1. Генеративные, происходящие в половых клетках.

2. Соматические, происходящие в соматических клетках.

Очевидно, два последних способа классификации мутаций применимы к эукариотам, а рассмотрение мутаций с точки зрения их возникновения в соматических или половых клетках имеет отношение только к многоклеточным эукариотам.

Очень часто мутации классифицируют по их фенотипическому проявлению, т.е. в зависимости от изменяющегося признака. Тогда рассматривают мутации летальные, морфологические, биохимические, поведенческие, устойчивости или чувствительности к повреждающим агентам и т.д.

В общем виде можно сказать, что мутации – это наследуемые изменения генетического материала. Об их появлении судят по изменениям признаков. В первую очередь это относится к генным мутациям. Хромосомные и геномные мутации выражаются также в изменении характера наследования признаков.



Генные мутации

1. Изменчивость, ее причины и методы изучения. Классификация форм изменчивости. Фенотипическая изменчивость и ее компоненты. Наследуемость признаков

2. Мутационная изменчивость. Основные положения мутационной теории. Общие свойства мутаций.

3. Генные мутации. Последствия мутаций. Методы выявления генных мутаций.

4. Общие закономерности мутационного процесса. Механизмы возникновения генных мутаций.

Изменчивость, ее причины и методы изучения. Классификация форм изменчивости. Фенотипическая изменчивость и ее компоненты. Наследуемость признаков

Самовоспроизведение с изменением – это одно из основных свойств жизни. Термин «изменчивость» служит для обозначения различных понятий; как и большинство других терминов, он полисемантичен (многозначен). Юрий Александрович Филипченко различал два основных подхода к определению изменчивости.

1. Изменчивость как состояние. В этом значении термин «изменчивость» служит для обозначения отличий биологических объектов друг от друга в данный момент времени. Всегда существуют различия между частями одного организма, между разными организмами в популяции, между разными внутрипопуляционными группировками, между популяциями.

2. Изменчивость как процесс. В этом значении термин «изменчивость» служит для обозначения изменения биологического объекта во времени. В этом случае изменчивость отражает развитие особи, отличие потомков от родителей.

Любая наблюдаемая изменчивость является фенотипической. В свою очередь, фенотипическая, или общая изменчивость включает три компонента:

Наследственная (генетическая , или генотипическая изменчивость ) – в значительной мере обусловлена влиянием генетических факторов. Например, в сходных условиях выращивается несколько сортов одного вида растений. Тогда различия между результатами эксперимента (например, урожайность) обусловлены генетическими особенностями каждого сорта. В основе генетической изменчивости лежит мутационная и комбинативная изменчивость.

Ненаследственная (модификационная ) изменчивость – в значительной мере обусловлена действием негенетических (экзогенных ) факторов. Например, один сорт растений выращивается в разных условиях. Тогда различия между результатами эксперимента (например, урожайность) обусловлены влиянием условий выращивания растений.

Неконтролируемая (остаточная изменчивость ) – обусловлена неконтролируемыми (по крайней мере, в данном эксперименте) факторами.

Для разных признаков влияние генотипа и условий среды на общую фенотипическую изменчивость неодинаково. Например, окраска шерсти, жирномолочность у крупного рогатого скота, масса яиц у кур зависят, в основном, от особенностей породы (т.е. от генотипа) – эти признаки обладают высокой наследуемостью. Другие признаки: качество шерсти, общая удойность у КРС, яйценоскость у кур – зависят, в основном, от условий выращивания и содержания – эти признаки обладают низкой наследуемостью.



Мутационная изменчивость. Основные положения мутационной теории. Общие свойства мутаций

Термин «мутация» (от лат. mutatio – изменение) долгое время использовался в биологии для обозначения любых скачкообразных изменений. Например, немецкий палеонтолог В. Вааген называл мутацией переход от одних ископаемых форм к другим. Мутацией называли также появление редких признаков, в частности,меланистических форм среди бабочек.

Современные представления о мутациях сложились к началу XX столетия. Например, российский ботаник Сергей Иванович Коржинский в 1899 г. разработал эволюционную теорию гетерогенезиса, основанную на представлениях о ведущей эволюционной роли дискретных (прерывистых) изменений.

Однако наиболее известной стала мутационная теория голландского ботаника Хьюго (Гуго) Де Фриза (1901 г.), который ввел современное, генетическое понятие мутации для обозначения редких вариантов признаков в потомстве родителей, которые не имели этого признака.

Де Фриз разработал мутационную теорию на основе наблюдений за широко распространенным сорным растением – ослинником двулетним, или энотерой (Oenothera biennis ). У этого растения существует несколько форм: крупноцветковые и мелкоцветковые, карликовые и гигантские. Де Фриз собирал семена с растения определенной формы, высевал их и получал в потомстве 1…2% растений другой формы. В дальнейшем было установлено, что появление редких вариантов признака у энотеры не является мутацией; данный эффект обусловлен особенностями организацией хромосомного аппарата этого растения. Кроме того, редкие варианты признаков могут быть обусловлены редкими сочетаниями аллелей (например, белая окраска оперения у волнистых попугайчиков определяется редким сочетаниемaabb ).

Основные положения мутационной теории Де Фриза остаются справедливыми и по сей день (разумеется, с некоторыми современными уточнениями):

Положения мутационной теории Де Фриза Современные уточнения
Мутации возникают внезапно, без всяких переходов. существует особый тип мутаций, накапливающихся в течение ряда поколений (прогрессирующая амплификация в интронах).
Успех в выявлении мутаций зависит от числа проанализированных особей. без изменений
Мутантные формы вполне устойчивы. при условии 100%-ной пенетрантности (мутантному генотипу соответствует мутантный фенотип) и 100%-ной экспрессивности (одна и та же мутация проявляется у разных особей в равной степени)
Мутации характеризуются дискретностью (прерывистостью); это качественные изменения, которые не образуют непрерывных рядов, не группируются вокруг среднего типа (моды). существуют ликовые мутации, в результате которых происходит незначительное изменение характеристик конечного продукта
Одни и те же мутации могут возникать повторно. это касается генных мутаций; хромосомные аберрации уникальны и неповторимы
Мутации возникают в разных направлениях, они могут быть вредными и полезными. сами по себе мутации не носят адаптивный характер; только в ходе эволюции, в ходе отбора оценивается «полезность», «нейтральность» или «вредность» мутаций в определенных условиях; при этом «вредность» и «полезность» мутаций зависит от генотипической среды

В настоящее время принято следующее определение мутаций:

Мутации – это качественные изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Организм, во всех клетках которого обнаруживается мутация, называется мутантом . Это происходит в том случае, если данный организм развивается из мутантной клетки (гаметы, зиготы, споры). В ряде случаев мутация обнаруживается не во всех соматических клетках организма; такой организм называют генетической мозаикой . Это происходит, если мутации появляются в ходе онтогенеза – индивидуального развития. И, наконец, мутации могут происходить только в генеративных клетках (в гаметах, спорах и в клетках зародышевого пути – клетках-предшественницах спор и гамет). В последнем случае организм не является мутантом, но часть его потомков будет мутантами.

Различают «новые» мутации (возникающие de novo) и «старые» мутации. Старые мутации – это мутации, появившиеся в популяции задолго до начала их изучения; обычно о старых мутациях едет речь в генетике популяций и в эволюционной теории. Новые мутации – это мутации, появляющиеся в потомстве немутантных организмов (♀АА × ♂ АА Аа ); обычно именно о таких мутациях идет речь в генетике мутагенеза.

Мутация – это случайное явление, т.е. невозможно предсказать: где, когда и какое изменение произойдет. Можно только оценить вероятность мутации в популяциях, зная фактические частоты определенных мутаций. Например, вероятность появления у кишечной палочки устойчивости к тетрациклину равна 10 –10 (одна десятимиллиардная), поскольку лишь одна из 10 миллиардов клеток обнаруживает устойчивость к этому антибиотику (зато все потомство этой бактерии будет устойчивым к тетрациклину).

Установлено, что мутабильность гена (т.е. частота появления определенной мутации) зависит от природы гена: существуют гены, склонные к мутированию, и относительно стабильные гены.

Вероятность события – это математическая абстракция, математическое ожидание того, или иного события. Вероятность случайного события лежит в пределах от 0 до 1. Математическое ожидание определяется вне опыта (априорно), на основании дедуктивных рассуждений. Например, при подбрасывании монеты вероятность выпадения «орла» равна вероятности выпадения «решки» и равна 50% или 0,5: Р О =Р Р =0,5.

Однако в биологии вероятность многих событий не может быть найдена вне опыта, например, вероятность рождения ребенка с синдромом Дауна. Тогда понятие математической вероятности подменяется понятиемстатистической вероятности . Статистическая вероятность определяется опытным путем (апостериорно). Численно статистическая , или апостериорная вероятность события равна относительной частоте этого события. Например, на 700 новорожденных приходится один ребенок с болезнью Дауна. Тогда статистическая вероятность рождения ребенка с этим заболеванием равна 1/700 ≈ 0,0014.

Относительная частота колеблется около некоторого постоянного числа, которое и является математическим ожиданием события. Чем больше проведено наблюдений, тем больше апостериорная вероятность приближается к математическому ожиданию данного события.

В одной и той же клетке может произойти несколько мутаций. Однако единичная мутация – это редкое событие. Поэтому для нахождения вероятности одновременного появления двух, трех и более мутаций нельзя использовать правило перемножения вероятностей. Вероятность того, что в клетке не произойдет ни одной мутации, произойдет одна мутация или более рассчитывается по закону Пуассона (чем выше вероятность одиночной мутации, тем более симметричной становится кривая распределения).

§ 2. Мутационная теория

Открытие прерывистых, внезапных, наследственных ненаправленных изменений - мутаций (от лат. mutation - изменение) * , распределение которых носит чисто случайный характер, послужило толчком для еще более бурного развития классической генетики в начале 20-го века и для выяснения роли наследственных изменений в эволюции.

* (Внезапно возникающие наследственные изменения еще издавно (в 17-м и 18-м веках) называли мутациями. Воскресил этот термин Г. Де Фриз. )

В 1898 г. русский ботаник С. И. Коржинский , а два года спустя голландский ботаник Де Фриз (один из тех, кто вторично открыл закон Менделя - см. главу IV, § 3) делают независимо друг от друга еще одно чрезвычайно важное генетическое обобщение, получившее название мутационной теории.

Сущность этой теории заключается в том, что мутации возникают внезапно и ненаправленно, но, раз возникнув, мутация становится устойчивой. Одна и та же мутация может возникать повторно.

Однажды, проходя мимо картофельного поля (близ голландской деревни Гилверсум), заросшего привезенным из Америки сорняком ослинником, ночной свечкой или энотерой (Oenothera Lamarckiana ) из семейства кипрейных (в состав которого входит всем известный кипрей, или Иван-чай), Де Фриз заметил среди обычных растений экземпляры, резко от них отличающиеся. Ученый собрал семена этих исключительных растений и высеял их в своем опытном саду. В течение 17 лет Де Фриз наблюдал энотеру (тысячи растений). Вначале он обнаружил три мутанта: один из них был карликовым, другой гигантским - крупными оказались его листья, цветы, плоды, семена, длинными стебли (рис. 29), третий имел красные жилки на листьях и плодах. За 10 лет от нормальных растений Де Фриз получил много новых форм, отличающихся рядом признаков. Ученый внимательно следил за мутантами (так называются носители мутаций) и их потомками на протяжении нескольких лет. На основании наблюдений, дополняя учение Дарвина, он пришел к заключению о первостепенной важности резких наследственных уклонений - мутаций для возникновения новых видов. Мутации появляются в самых разных направлениях у представителей любого из видов. Так как не все мутации позволяют мутанту выжить (в определенной среде), то дальнейшее существование соответствующей формы решается дарвиновской борьбой за существование путем естественного отбора.

Вскоре в научной литературе появилось множество описаний различных мутаций у животных и растений.

Не зная механизма возникновения мутаций, Де Фриз полагал, что все подобные изменения возникают самопроизвольно, спонтанно. Это положение справедливо лишь для части мутаций.

Неизбежность спонтанных мутаций следует из неизбежности движения атомов, при котором рано или поздно, но статистически неизбежно происходят переходы электронов с одной орбиты на другую. В результате изменяются отдельные атомы и целые молекулы даже при самых постоянных условиях среды. В появлении спонтанных мутаций и сказывается это неизбежное изменение любой физико-химической структуры (такой структурой являются и молекулы ДНК - хранители наследственной информации).

Спонтанные мутации постоянно обнаруживаются в природе с определенной частотой, сравнительно близкой у самых разнообразных видов живых организмов. Частота появления спонтанных мутаций колеблется по отдельным признакам от одной мутации на 10 тыс. гамет до одной мутации на 10 млн. гамет. Однако в связи с большим числом генов у каждой особи у всех организмов 10-25% всех гамет несут те или иные мутации. Примерно каждый десятый индивидуум является носителем новой спонтанной мутации.

Надо отметить, что большинство вновь возникающих мутаций находится обычно в рецессивном состоянии, увеличивая лишь скрытую, потенциальную, изменчивость, характерную для организмов любого вида. При изменении условий внешней среды, например при изменении действия естественного отбора, эта скрытая наследственная изменчивость может проявиться, так как особи, несущие в гетерозиготном состоянии рецессивные мутации, не будут в новых условиях уничтожаться в процессе борьбы за существование, а будут оставаться и давать потомство. Самопроизвольные, спонтанные мутации появляются без каких-либо вмешательств со стороны. Однако существует множество так называемых индуцированных мутаций . Факторами, вызывающими (индуцирующими) мутации, могут быть самые разнообразные влияния внешней среды: температура, ультрафиолетовое излучение, радиация (как естественная, так и искусственная), действие различных химических соединений - мутагенов . Мутагенами называют агенты внешней среды, вызывающие те или иные изменения генотипа - мутацию, а сам процесс образований мутаций - мутагенезом.

Радиоактивным мутагенезом начали заниматься в 20-х годах нашего столетия. В 1925 г. советские ученые Г. С. Филиппов и Г. А. Надсон впервые в истории генетики применили рентгеновские лучи для получения мутаций у дрожжей. Через год американский исследователь Г. Меллер (впоследствии дважды лауреат Нобелевской премии), длительное время работавший в Москве, в институте, руководимом Н. К. Кольцовым , применил тот же мутаген на дрозофиле.

У дрозофилы обнаружены многочисленные мутации, две из них vestigial и curled изображены на рис. 30.

В настоящее время работы в этой области переросли в одну из наук-радиационную биологию, науку, имеющую большое практическое применение. Например, некоторые мутации грибов - продуцентов антибиотиков - дают в сотни и даже тысячи раз больший выход лекарственных веществ. В сельском хозяйстве благодаря мутациям получены высокоурожайные растения. Радиационная генетика имеет значение в изучении, освоении космических пространств.

Химический мутагенез впервые целенаправленно начали изучать сотрудник Н. К. Кольцова В. В. Сахаров в 1931 г. на дрозофиле при воздействии на ее яйца йодом, а позже М. Е. Лобашов.

К химическим мутагенам относятся самые разнообразные вещества (алкилирующие соединения, перекись водорода, альдегиды и кетоны, азотистая кислота и ее аналоги, различные антиметаболиты, соли тяжелых металлов, красители, обладающие основными свойствами, вещества ароматического ряда), инсектициды (от лат. insecta - насекомые, cida - убийца), гербициды (от лат herba - трава), наркотики, алкоголь, никотин, некоторые лекарственные вещества и многие другие.

За последние годы в нашей стране начаты работы по использованию химических мутагенов для создания новых пород животных . Интересные результаты достигнуты по изменению окраски шерсти у кроликов и увеличению длины шерсти у овец. Существенно, что эти достижения получены при таких дозировках мутагенов, которые не вызывают гибели подопытных животных. Широко используются сильнейшие химические мутагены (нитрозоалкилмочевины, 1,4-бисдиазоацетилбутан).

Одной из основных задач селекции сельскохозяйственных растений является создание сортов, устойчивых к грибковым и вирусным заболеваниям. Химические мутагены являются эффективным средством для получения форм растений, устойчивых к самым различным заболеваниям. У злаков (яровая и озимая пшеница, ячмень, овес) получены формы, устойчивые к мучнистой росе, с повышенной устойчивостью к различным видам ржавчины. Немаловажно то, что у отдельных мутантов увеличение количества белка не коррелирует с ухудшением его качества и возможно получение форм с повышенным содержанием белка и незаменимых аминокислот в нем (лизина, метионина, треонина).

Среди мутантов, индуцированных химическими мутагенами, большой интерес представляют формы с комплексом положительных признаков. Нередки случаи получения таких форм у пшеницы, гороха, томатов, картофеля и других культур. Мутации являются материалом как для естественного , так и для искусственного отбора (селекции).

В 1920 г. в то время еще молодой, но один из крупнейших генетиков 20-го века Николай Иванович Вавилов установил, что существует параллелизм изменчивости среди самых разнообразных систематических единиц живых существ. Это положение получило название правила гомологических (от лат. homologis - согласие, единое происхождение) рядов, которое до известной степени позволяет предсказать, какие мутации могут возникать у родственных (а иногда и у отдаленных) форм. Это правило заключается в том, что между различными систематическими группами (виды, роды, классы и даже типы) существуют повторяющиеся ряды форм, сходные по своим морфологическим и физиологическим свойствам. Это сходство обусловлено наличием общих генов и сходным их мутированием.

Так, среди сортов пшеницы и ржи встречаются сходные формы, озимые и яровые, обладающие остистостью, короткоостистостью или безостистостью колоса; и у тех и у других наблюдаются опущенные, гладкоколосные, красно-, бело- и черноколосные расы, расы с ломким и неломким колосом и другими признаками. Подобный же параллелизм между организмами, относящимися к разным видам, родам, семействам и даже к разным классам, наблюдается у животных. Примером могут служить гигантизм, карликовость или отсутствие пигментации - альбинизм у млекопитающих, птиц, а также у других животных и растений.

Обнаружив у одного биологического вида серию форм А, Б, В, Г, Д, Е и установив у другого родственного ему вида формы А 1 , Б 1 , Д 1 , Е 1 , можно предположить, что существуют еще не открытые формы В 1 и Г 1 .

У человека частота мутирования составляет в естественных условиях 1:1 000 000, но если учесть огромное число генов, то не менее 10% гамет как мужских, так и женских, несет какую-либо вновь возникающую мутацию.




  • Основные положения мутационной теории (Гуго де Фриз)

  • Мутации - это наследственные изменения.

  • Мутации- редкие события, передающиеся по наследству.

  • Мутации возникают спонтанно.

  • Мутации могут быть полезными, вредными или нейтральными







  • Генные мутации, геномные мутации,. хромосомные мутации:

  • --- связаны с изменениями внутри гена

  • --- связаны с изменениями структуры хромосом

  • --- приводят к изменению числа хромосом


Полиплоидия

  • Полиплоидия - кратное увеличение числа хромосом.

  • Анэуплоидия - утеря или появление лишних хромосом в результате нарушения мейоза


Генеративные мутации

  • Генеративные мутации

  • ХХУ; ХУУ- синдром Клайнфельтера.

  • ХО- синдром Шершевского- Тернера.

  • Аутосомные мутации

  • Синдром Патау (по 13 хромосоме).

  • Синдром Эдвардса(по 18 хромосоме).

  • Синдром Дауна (по 21 хромосоме).


  • ХХY и XXXY – синдром Кляйнфельтера . Частота встречаемости 1:400 – 1:500. Кариотип – 47, XXY, 48, XXXY и др. Фенотип мужской. Женский тип телосложения, гинекомастия. Высокий рост, относительно длинные руки и ноги. Слабо развит волосяной покров. Интеллект снижен.



    X0 – синдром Шерешевского -Тернера (моносомия Х). Частота встречаемости 1:2000 – 1:3000. Кариотип 45,Х. Фенотип женский. Соматические признаки: рост 135 – 145 см, крыловидная кожная складка на шее (от затылка к плечу), низкое расположение ушей, недоразвитие первичных и вторичных половых признаков. В 25% случаев имеются пороки сердца и аномалии работы почек. Интеллект страдает редко.



Трисомия по 13-й хромосоме

    Трисомия по 13-й хромосоме (синдром Патау) обнаруживается у новорожденных с частотой около 1:5000 - 1:7000 и связана с широким спектром пороков развития. Для СП характерны множественные врожденные пороки развития головного мозга и лица. Это группа ранних нарушений формирования головного мозга, глазных яблок, костей мозговой и лицевой частей черепа. Окружность черепа обычно уменьшена. Лоб скошенный, низкий; глазные щели узкие, переносье запавшее, ушные раковины низко расположенные и деформированные. Типичный признак СП - это расщелины верхней губы и неба


  • Болезнь, обусловленная аномалией хромосомного набора (изменением числа или структуры аутосом), основными проявлениями которой являются умственная отсталость, своеобразный внешний облик больного и врожденные пороки развития. Одна из наиболее распространенных хромосомных болезней, встречается в среднем с частотой 1 на 700 новорожденных.






Замена оснований:

  • Замена оснований:

  • а ) фенилкетонурия. Проявление: нарушение расщепления фенилаланина; этим обусловлено слабоумие, вызываемое гиперфенилаланинемией. При своевременно назначенной и соблюдаемой диете (питание, обедни фенилаланином) и применении определенных медикаментов, клинические проявления этого заболевания практически отсутствуют

  • б) серповидно- клеточная анемия.

  • в) синдром Морфана.


  • Первичная структура гемоглобина здоровых (1) и больных серповидно- клеточной анемией (2).

  • 1) - вал- гис-лей-тре – про-глут. к-та- глу-лиз

  • 2) - вал- гис-лей-тре – валин - глу-лиз




  • Высокий выброс адреналина, характерный для заболевания, способствует не только развитию сердечно-сосудистых осложнений, но и появлению у некоторых лиц особой силы духа и умственной одаренности. Способы лечения неизвестны. Считают, что ею болели Паганини, Андерсен, Чуковский.




    Гемофилия (кровоточивость). Причина: генная мутация. Проявление: недостаточное развитие факторов свертывания крови (тромбокиназ), сильно затягивающееся время свертывания крови; при ранениях большие потери крови. Наследование сопряжено с полом; ген, ответственный за болезнь, расположен в Х-хромосоме, рецессивен. Ген этой болезни наследуется по материнской линии. Гомозиготность, как правило, летальна .


  • Медико-генетическое консультирование при беременности в возрасте 35 лет и старше, наличии наследственных болезней в родословной

  • Исключение родственных браков


  • Мутагены- факторы, вызывающие мутации: биологические, химические физические.

  • Физические факторы (различные виды ионизирующей радиации, ультрафиолетовое излучение, лучи Рентгена)

  • Химические факторы (инсектициды, гербициды, свинец, наркотики, алкоголь, некоторые лекарственные препараты и др.вещества)

  • Биологические факторы (вирусы оспы, ветряной оспы, эпидемического паротита, гриппа, кори, гепатита и др.)



  • Мутантный сорт пшеницы Новосибирская 67 был получен после обработки семян исходного сорта Новосибирская 7 рентгеновскими лучами



  • Медико-генетическое консультирование при беременности в возрасте 35 лет и старше, наличии наследственных болезней в родословной. Современные возможности медико-генетического консультирования позволяют определить во время планирования беременности риск наследственных заболеваний

  • Исключение родственных браков


  • Содействовать сохранению нормальной экологической обстановки;

  • Не ухудшать не сейчас ни в будущем экологию родного края;

  • Не употреблять алкогольные напитки;

  • Не курить;

  • Не принимать наркотические средства;

  • Полноценно питаться;

  • Заниматься спортом.


  • Николай Иванович Вавилов (1887–1943) – русский ботаник, генетик, растениевод, географ. Сформулировал закон гомологических рядов наследственной изменчивости. Создал учение о центрах происхождения культурных растений.