Сумма произведение и разность случайных событий. Операции над событиями (сумма, разность, произведение). Достоверное и невозможное события


Правило сложения - если элемент A можно выбрать n способами, а элемент B можно выбрать m способами, то выбрать A или B можно n + m способами.

^ Правило умножения - если элемент A можно выбрать n способами, и при любом выборе A элемент B можно выбрать m способами, то пару (A, B) можно выбрать n·m способами.

Перестановка. Перестановкой множества из элементов называется расположение элементов в определенном порядке. Так, все различные перестановки множества из трех элементов - это

Число всех перестановок из элементов обозначается . Следовательно, число всех различных перестановок вычисляется по формуле

Размещение. Число размещений множества из элементов по элементов равно

^ Размещение с повторением. Если есть множество из n типов элементов, и нужно на каждом из m мест расположить элемент какого-либо типа (типы элементов могут совпадать на разных местах), то количество вариантов этого будет n m .

^ Cочетание. Определение. Сочетаниями из различных элементов по элементов называются комбинации, которые составлены из данных элементов по элементов и отличаются хотя бы одним элементом (иначе говоря, -элементные подмножества данного множества из элементов). butback="" onclick="goback(684168)">^ " ALIGN=BOTTOM WIDTH=230 HEIGHT=26 BORDER=0>


  1. Пространство элементарных событий. Случайное событие. Достоверное событие. Невозможное событие.
Пространство элементарных событий – любое множество взаимоисключающих исходов эксперимента, такое, что каждый интересующий нас результат может быть однозначно описан с помощью элементов этого множества. Бывает конечным и бесконечным(счетным и несчетным)

Случайное событие – любое подмножество пространства элементарных событий.

^ Достоверное событие – обязательно произойдет в результате эксперимента.

Невозможное событие – не произойдет в результате эксперимента.


  1. Действия над событиями: сумма, произведение и разность событий. Противоположное событие. Совместные и несовместные события. Полная группа событий.
Совместные события – если они могут произойти одновременно в результате эксперимента.

^ Несовместные события – если они не могут произойти одновременно в результате эксперимента. Говорят, что несколько несовместных событий образуют полную группу событий , если в результате эксперимента появится одно из них.

Если первое событие состоит из всех элементарных исходов, кроме тех, которые входят во второе событие, то такие события называются противоположными.

Сумма двух событий А и В – событие, состоящее из элементарных событий, принадлежащих хотя бы одному из событий А или В. ^ Произведение двух событий А и В – событие, состоящее из элементарных событий, принадлежащих одновременно А и В. Разность А и В – событие, состоящее из элементов А, не принадлежащих событию В.


  1. Классическое, статистическое и геометрическое определения вероятности. Основные свойства вероятности события.
Классическая схема: Р(А)=, n – число возможных исходов, m – число исходов, благоприятствующих событию А. татистическое определение: W(А)=, n – число произведенных экспериментов, m – число произведенных экспериментов, в которых появилось событие А. Геометрическое определение: Р(А)=, g – часть фигуры G.

^ Основные свойства вероятности: 1) 0≤Р(А)≤1, 2) Вероятность достоверного события равна 1, 3) Вероятность невозможного события равна 0.


  1. Теорема сложения вероятностей несовместных событий и следствия из нее.
Р(А+В) = Р(А)+Р(В). Следствие 1. Р(А 1 +А 2 +…+А к) = Р(А 1)+Р(А 2)+…+Р(А к), А 1 ,А 2 ,…,А к – попарно несовместны. Следствие 2 . Р(А)+Р(Ᾱ) = 1. Следствие 3 . Сумма вероятностей событий, образующих полную группу, равна 1.

  1. Условная вероятность. Независимые события. Умножение вероятностей зависимых и независимых событий.
Условная вероятность – Р(В), вычисляется в предположении, что событие А уже наступило. А и В независимые – если появление одного из них не меняет вероятность появления другого.

^ Умножение вероятностей: Для зависимых. Теорема. Р(А∙В) = Р(А)∙Р А (В). Замечание. Р(А∙В) = Р(А)∙Р А (В) = Р(В)∙Р В (А). Следствие. Р(А 1 ∙…∙А к) = Р(А 1)∙Р А1 (А 2)∙…∙Р А1-Ак-1 (А к). Для независимых. Р(А∙В) = Р(А)∙Р(В).


  1. ^ Т еорема сложения вероятностей совместных событий. Теорема . Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления
P(A+B) = P(A) + P(B) - P(A∙B)

  1. Формула полной вероятности. Формулы Байеса.
Формула полной вероятности

Н 1, Н 2 …Н n – образуют полную группу – гипотезы.

Событие А может наступить только при условии появления Н 1, Н 2 …Н n ,

Тогда Р(А)=Р(Н 1)* Р н1 (А)+Р(Н 2)*Р н2 (А)+…Р(Н n)*Р н n (А)

^ Формула Байеса

Пусть Н 1, Н 2 …Н n – гипотезы, событие А может наступить при одной из гипотез

Р(А)= Р(Н 1)* Р н1 (А)+Р(Н 2)*Р н2 (А)+…Р(Н n)*Р н n (А)

Допустим, что событие А наступило.

Как изменилась вероятность Н 1 в связи с тем, что А наступило? Т.е. Р А (Н 1)

Р(А* Н 1)=Р(А)* Р А (Н 1)= Р(Н 1)* Р н1 (А) => Р А (Н 1)= (Р(Н 1)* Р н1 (А))/ Р(А)

Аналогично определяются Н 2 , Н 3 …Н n

Общий вид:

Р А (Н i)= (Р(Н i)* Р н i (А))/ Р(А) , где i=1,2,3…n.

Формулы позволяют переоценить вероятности гипотез в результате того, как становится известным результат испытаний, в итоге которого появилось событие А.

«До» испытания – априорные вероятности - Р(Н 1), Р(Н 2)…Р(Н n)

«После» испытания – апостериорные вероятности - Р А (Н 1), Р А (Н 2)… Р А (Н n)

Апостериорные вероятности, также как и априорные, в сумме дают 1.
9.Формулы Бернулли и Пуассона.

Формула Бернулли

Пусть проводятся n испытаний, в каждом из которых событие А может появиться или нет. Если вероятность события А в каждом из этих испытаний постоянна, то эти испытания независимы относительно А.

Рассмотрим n независимых испытаний, в каждом из которых А может наступить с вероятностью p. Такая последовательность испытаний называется схемой Бернулли.

Теорема: вероятность того, что при n испытаниях событие А произойдет ровно m раз, равна: P n (m)=C n m *p m *q n - m

Число m 0 – наступление события А называется наивероятнейшим, если соответствующая ему вероятность P n (m 0) не меньше других P n (m)

P n (m 0)≥ P n (m), m 0 ≠ m

Для нахождения m 0 используют:

np-q≤ m 0 ≤np+q

^ Формула Пуассона

Рассмотрим испытание Бернулли:

n- число испытаний, p – вероятность успеха

Пусть p мало (p→0), а n велико (n→∞)

среднее число появлений успеха в n испытаниях

λ=n*p → p= λдставим в формулу Бернулли:

P n (m)=C n m *p m *(1-q) n-m ; C n m = n!/((m!*(n-m)!) →

→ P n (m)≈ (λ m /m!)*e - λ (Пуассона)

Если p≤0,1 и λ=n*p≤10, то формула дает хорошие результаты.
10. Локальная и интегральная теоремы Муавра-Лапласа.

Пусть n- число испытаний, p – вероятность успеха, n велико и стремится к бесконечности. (n->∞)

^ Локальная теорема

Р n (m)≈(f(x)/(npg)^ 1/2 , где f(x)= (e - x ^2/2)/(2Pi)^ 1/2

Если npq≥ 20 – дает хорошие результаты, х=(m-np)/(npg)^ 1/2

^ Теорема интегральная

P n (a≤m≤b)≈ȹ(x 2)-ȹ(x 1),

где ȹ(x)=1/(2Pi)^ 1/2 * 0 ʃ x e (Pi ^2)/2 dt – функция Лапласа

х 1 =(a-np)/(npq)^ 1/2 , х 2 =(b-np)/(npq)^ 1/2

Свойства функции Лапласа


  1. ȹ(x) – нечетная функция: ȹ(-x)=- ȹ(x)

  2. ȹ(x) – монотонно возрастает

  3. значения ȹ(x) (-0.5;0.5), причем lim x →∞ ȹ(x)=0,5; lim x →-∞ ȹ(x)=-0,5
Следствия

  1. P n (│m-np│≤Ɛ) ≈ 2 ȹ (Ɛ/(npq) 1/2)

  2. P n (ɑ≤m/n≤ƥ) ≈ ȹ(z 2)- ȹ(z 1), где z 1=(ɑ-p)/(pq/n)^ 1/2 z 2=(ƥ -p)/(pq/n)^ 1/2

  3. P n (│(m/n) - p│≈ ∆) ≈ 2 ȹ(∆n 1/2 /(pq)^ 1/2)
m/n относительная частота появления успеха в испытаниях

11. Случайная величина. Виды случайных величин. Способы задания случайной величины.

СВ – функция, заданная на множестве элементарных событий.

X,Y,Z – СВ, а ее значение x,y,z

Случайной называют величину, которая в результате испытаний примет одно и только одно возможное значение, наперед не известное и зависящее от случайных причин, которые заранее не могут быть учтены.

СВ дискретна , если множество ее значений конечно или сочтено (их можно пронумеровать). Она принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной СВ может быть конечным или бесконечным.

СВ непрерывна , если она принимает все возможные значения из некоторого промежутка (на всей оси). Ее значения могут очень мало отличаться.

^ Закон распределения дискретной СВ м.б. задан:

1.таблицей


Х

х 1

х 2



х n

Р(Х)

р 1

р 2



p n

(ряд распределения)

Х=х 1 } несовместны

р 1 + р 2 +… p n =1= ∑p i

2.графический

Многоугольник распределения вероятности

3.аналитический

Р=Р(Х)
12. Функция распределения случайной величины. Основные свойства функции распределения.

Функция распределения СВ Х – функция F(Х), определяющая вероятность того, что СВ Х примет значение меньшее х., т.е.

x x = интегральная функция распределения

У непрерывной СВ функция непрерывная, кусочно дифференцируемая.

Цель: ознакомить учащихся с правилами сложения и умножения вероятностей, понятием противоположных событий на кругах Эйлера.

Теория вероятностей есть математическая наука, изучающая закономерности в случайных явлениях.

Случайное явление – это такое явление, которое при неоднократном воспроизведении одного и того же опыта протекает каждый раз несколько по иному.

Приведём примеры случайных событий: бросаются игральные кости, бросается монета, проводится стрельба по мишени и т.д.

Все приведённые примеры можно рассматривать под одним и тем же углом зрения: случайные вариации, неодинаковые результаты ряда опытов, основные условия которых остаются неизменными.

Совершенно очевидно, что в природе нет ни одного физического явления, в котором не присутствовали бы в той или иной степени элементы случайности. Как бы точно и подробно ни были фиксированы условия опыта, невозможно достигнуть того, чтобы при повторении опыта результаты полностью и в точности совпадали.

Случайные отклонения неизбежно сопутствуют любому закономерному явлению. Тем не менее, в ряде практических задач этими случайными элементами можно пренебречь, рассматривая вместо реального явления, его упрощённую схему «модель» и предполагая, что в данных условиях опыта явление протекает вполне определённым образом.

Однако существует ряд задач, где интересующий нас исход опыта зависит от столь большого числа факторов, что практически невозможно зарегистрировать и учесть все эти факторы.

Случайные события можно различным способом сочетать друг с другом. При этом образуются новые случайные события.

Для наглядного изображения событий используют диаграммы Эйлера . На каждой такой диаграмме прямоугольником изображают множество всех элементарных событий (рис.1). Все другие события изображают внутри прямоугольника в виде некоторой его части, ограниченной замкнутой линией. Обычно такие события изображают окружности или овалы внутри прямоугольника.

Рассмотрим наиболее важные свойства событий с помощью диаграмм Эйлера.

Объединением событий A и B называют событие C, состоящее из элементарных событий принадлежащих событию А или В (иногда объединения называют суммой).

Результат объединения можно изобразить графически диаграммой Эйлера (рис. 2).

Пересечением событий А и В называют событие С, которое благоприятствует и событию А, и событию В (иногда пересечения называют произведением).

Результат пересечения можно изобразить графически диаграммой Эйлера (рис. 3).

Если события А и В не имеют общих благоприятствующих элементарных событий, то они не могут наступить одновременно в ходе одного и то же опыта. Такие события называют несовместными , а их пересечение – пустое событие .

Разностью событий А и В называют событие С, состоящее из элементарных событий А, которые не являются элементарными событиями В.

Результат разности можно изобразить графически диаграммой Эйлера (рис.4)

Пусть прямоугольник изображает все элементарные события. Событие А изобразим в виде круга внутри прямоугольника. Оставшаяся часть прямоугольника изображает противоположное событию A, событие (рис.5)

Событием, противоположным событию А называют событие, которому благоприятствуют все элементарные события, не благоприятствующие событию А.

Событие, противоположное событию А, принято обозначать .

Примеры противоположных событий.

Объединением нескольких событий называется событие, состоящее в появлении хотя бы одного из этих событий.

Например, если опыт состоит в пяти выстрелах по мишени и даны события:

А0- ни одного попадания;
А1- ровно одно попадание;
А2- ровно 2 попадания;
А3- ровно 3 попадания;
А4- ровно 4 попадания;
А5- ровно 5 попаданий.

Найти события: не более двух попаданий и не менее трёх попаданий.

Решение: А=А0+А1+А2 – не более двух попаданий;

В=А3+А4+А5 – не менее трёх попаданий.

Пересечением нескольких событий называется событие, состоящее в совместном появлении всех этих событий.

Например, если по мишени производится три выстрела, и рассматриваются события:

В1 - промах при первом выстреле,
В2 - промах при втором выстреле,
ВЗ - промах при третьем выстреле,

то событие состоит в том, что в мишень не будет ни одного попадания.

При определении вероятностей часто приходится представлять сложные события в виде комбинаций более простых событий, при­меняя и объединение, и пересечение событий.

Например, пусть по мишени производится три выстрела, и рассматриваются следующие элементарные события:

Попадание при первом выстреле,
- промах при первом выстреле,
- попадание при втором выстреле,
- промах при втором выстреле,
- попадание при третьем выстреле,
- промах при третьем выстреле.

Рассмотрим более сложное событие В, состоящее в том, что в результате данных трёх выстрелов будет ровно одно попада­ние в мишень. Событие В можно представить в виде следующей комбинации элементарных событий:

Событие С, состоящее в том, что в мишень будет не менее двух попаданий, может быть представлено в виде:

На рис.6.1 и 6.2 показано объединение и пересечение трёх событий.


рис.6

Для определения вероятностей событий применяются не непосредственные прямые методы, а косвенные. Позволяющие по известным вероятностям одних событий определять вероятности других событий, с ними связанных. Применяя эти косвенные методы, мы всегда в той или иной форме пользуемся основными правилами теории вероятностей. Этих правил два: правило сложения вероятностей и правило умножения вероятностей.

Правило сложения вероятностей формулируется следующим образом.

Вероятность объединения двух несовместных событий равна сумме вероятностей этих событий:

Р(А+В) =Р(А)+ Р(В).

Сумма вероятностей противоположных событий равна единице:

Р(А) + Р()= 1.

На практике весьма часто оказывается легче вычислить вероятность противоположного события А, чем вероятность прямого события А. В этих случаях вычисляют Р (А) и находят

Р (А) = 1-Р().

Рассмотрим несколько примеров на применение правила сложения.

Пример 1. В лотерее 1000 билетов; из них на один билет падает выигрыш 500 руб., на 10 билетов - выигрыши по 100 руб., на 50 билетов­ - выигрыши по 20 руб., на 100 - билетов - выигрыши по 5 руб., остальные билеты невыигрышные. Некто покупает один билет. Найти вероятность выиграть не менее 20 руб.

Решение. Рассмотрим события:

А - выиграть не менее 20 руб.,

А1 - выиграть 20 руб.,
А2 - выиграть 100 руб.,
А3 - выиграть 500 руб.

Очевидно, А= А1 +А2+А3.

По правилу сложения вероятностей:

Р (А) = Р (А1) + Р (А2) + Р (А3) = 0,050 + 0,010 + 0,001 = 0,061.

Пример 2. Производится бомбометание по трём складам боеприпасов, причём сбрасывается одна бомба. Вероятность попадания в первый склад 0,01; во второй 0,008; в третий 0,025. При попадании в один из складов взры­ваются все три. Найти вероятность того, что склады будут взорваны.

Алгебраические операции над событиями определяют правила действий с событиями и позволяют выражать одни события через другие. Операции над событиями применимы только для событий, представляющих подмножества одного и того же пространства элементарных событий.

Действия с событиями можно наглядно изобразить с помощью диаграмм Венна. В диаграммах событиям соответствуют различные области на плоскости, условно обозначающие подмножества элементарных событий, из которых состоят события. Так, на диаграммах рис.1.1 пространству элементарных событий соответствуют внутренние точки квадрата, событию А _ внутренние точки круга, событию В _ внутренние точки треугольника. То, что события А и В являются подмножествами пространства элементарных событий (А, В), изображено на диаграммах рис.1.1а,б.

Суммой (объединением) событий А и В называется событие С=А+В (или С=АВ), состоящее в том, что произойдет хотя бы одно из событий А или В. Событие С состоит из всех элементарных событий, принадлежащих по крайней мере одному из событий А или В, или обеим событиям. На диаграмме (рис 1.2.) событию С соответствует заштрихованная область С, представляющая объединение областей А и В. Аналогично суммой нескольких событий А 1 , А 2 ,…, А n называется событие С, состоящее в том, что произойдет хотя бы одно из событий А i , i=:

Сумма событий объединяет все элементарные события, из которых состоят А i , i=. Если события Е 1 , Е 2 ,…, Е n образуют полную группу, то их сумма равна достоверному событию:

Сумма элементарных событий равна достоверному событию

Произведением (пересечением) событий А и В называется событие С=АВ (или С=АВ), состоящее в совместном появлении событий А и В. Событие С состоит из тех элементарных событий, которые принадлежат и А, и В. На рис 1.3.а событие С представлено пересечением областей А и В. Если А и В - несовместные события, то их произведение - невозможное событие, т. е. АВ= (рис. 1.3.б).

Произведение событий А 1 , А 2 ,…, А n - это событие С, состоящее в одновременном выполнении всех событий А i , i=:

Произведения попарно несовместных событий А 1 , А 2 ,…, А n - невозможные события: А i А j =, для любого ij. Произведения событий, составляющих полную группу - невозможные события: Е i Е j =, ij, произведения элементарных событий - также невозможные события: ij =, ij.

Разностью событий А и В называется событие С=А_В (С=АВ), которое состоит в том, что происходит событие А и не происходит событие В. Событие С состоит из тех элементарных событий, которые принадлежат А и не принадлежат В. Диаграмма разности событий приведена на рис. 1.4. Из диаграммы видно, что С=А_В=

Противоположным событием для события А (или его дополнением) называется событие, которое состоит в том, что событие А не произошло. Противоположное событие дополняет событие А до полной группы и состоит из тех элементарных событий, которые принадлежат пространству и не принадлежат событию А (рис. 1.5). Таким образом, - это разность достоверного события и события А: =_А.

Свойства операций над событиями.

Переместительные свойства: А+В=В+А, А·В=В·А.

Сочетательные свойства: (А+В)+С=А+(В+С), (АВ)С=А(ВС).

Распределительное свойство: А(В+С)=АВ+АС.

Из определений операций над событиями следуют свойства

А+А=А; А+=; А+=А; А·А=А; А·=А; А·=

Из определения противоположного события следует, что

А+=; А=; =А; =; =; ;

Из диаграммы рис.1.4 очевидны свойства разности совместных событий:

Если А и В - несовместные события, то

Очевидны также свойства совместных событий

Для противоположных событий верны свойства, которые иногда называют правилом де Моргана или принципом двойственности: операции объединения и пересечения меняются местами при переходе к противоположным событиям

Доказательство принципа двойственности можно получить графически с помощью диаграмм Венна или аналитически, применив свойства 1-6

Следует обратить внимание на то, что действия, аналогичные действиям "приведение подобных членов" и возведения в степень в алгебре чисел, недопустимы при операциях с событиями.

Например, при операциях с событиями правильными являются действия:

Ошибочное применение действий по аналогии с алгебраическими: (А+В)В=А+ВВ=А проводит к неверному результату (проверьте с помощью диаграмм Венна!).

Пример 1.11. Доказать тождества

а) (А+С)(В+С)=АВ+С;

б) АС_В=АС_ВС

а) (А+С)(В+С) = АВ+СВ+АС+СС = АВ+С(А+В)+С= =АВ+С(А+В)+С = АВ+С(А+В+) = АВ+С = АВ+С;

б) АС_В = АС = СА = С(А_В) = СА_СВ = АС_ВС

Пример 1.12. Приз разыгрывается между двумя финалистами шоу-программы. Розыгрыш производится по очереди до первой удачной попытки, число попыток для каждого участника ограничено тремя. Первый финалист начинает первым. Рассматриваются события: А={приз выиграл первый финалист}; В={приз выиграл второй финалист}. 1) Дополнить эти события до полной группы и составить для нее достоверное событие. 2) Составить полную группу элементарных событий. 3) Выразить события первой полной группы через элементарные. 4) Составить другие полные группы событий и записать через них достоверные события.

1) События А и В несовместные, до полной группы они дополняются несовместным событием С={приз не выиграл никто}. Достоверное событие ={приз выиграет или первый финалист, или второй, или никто не выиграет} равно: =А+В+С.

2) Введем события, которые описывают исход каждой попытки для каждого игрока и не зависят от условий конкурса: А i ={первый финалист успешно провел i-тую попытку}, В i ={второй финалист успешно провел i-тую попытку}, . Эти события не учитывают условий конкурса, поэтому не являются элементарными относительно факта выигрыша приза. Но через эти события с помощью операций над событиями можно составить полную группу элементарных событий, которые учитывают условия выигрыша с первой удачной попытки: 1 ={первый финалист выиграл приз с первой попытки}, 2 ={второй финалист выиграл приз с первой попытки}, 3 ={первый финалист выиграл приз со второй попытки}, 4 ={второй финалист выиграл приз со второй попытки}, 5 ={первый финалист выиграл приз с третьей попытки}, 6 ={второй финалист выиграл приз с третьей попытки}, 7 ={оба финалиста не выиграли приз за три попытки}. По условиям конкурса

1 =А 1 , 2 =, 3 =, 4 =,

5 =, 6 = , 7 = .

Полная группа элементарных событий: ={ 1 ,…, 7 }

3) События А и В через элементарные выражаются с помощью операций суммирования, С совпадает с элементарным событием:

4) Полные группы событий также составляют события

Соответствующие им достоверные события:

={первый финалист или выиграет приз, или не выиграет}=;

={второй финалист или выиграет приз, или не выиграет}=;

={приз или не выиграют, или выиграют}=.

Сумма всех вероятностей событий выборочного пространства равняется 1. Например, если экспериментом является подбрасывание монеты при Событии А = «орел» и Событии В = «решка», то А и В представляют собой все выборочное пространство. Значит, Р(А) +Р(В) = 0.5 + 0.5 = 1 .

Пример. В ранее предложенном примере вычисления вероятности извлечения из кармана халата красной ручки (это событие А), в котором лежат две синих и одна красная ручка, Р(А) = 1/3 ≈ 0.33, вероятность противоположного события – извлечения синей ручки – составит

Прежде чем перейти к основным теоремам, введем еще два более сложных понятия - сумма и произведение событий. Эти понятия отличны от привычных понятий суммы и произведения в арифметике. Сложение и умножение в теории вероятностей - символические операции, подчиненные определенным правилам и облегчающие логическое построение научных выводов.

Суммой нескольких событий является событие, заключающееся в появлении хотя бы одного из них. То есть, суммой двух событий А и В называется событие С, состоящее в появлении или события А, или события В, или событий А и В вместе.

Например, если пассажир ждет на остановке трамваев какой-либо из двух маршрутов, то нужное ему событие заключается в появлении трамвая первого маршрута (событие А), или трамвая второго маршрута (событие В), или в совместном появлении трамваев первого и второго маршрутов (событие С). На языке теории вероятностей это значит, что нужное пассажиру событие D заключается в появлении или события А, или события В, или события С, что символически запишется в виде:

D = A + B + C

Произведением двух событий А и В является событие, заключающееся в совместном появлении событий А и В . Произведением нескольких событий называется совместное появление всех этих событий.

В приведенном примере с пассажиром событие С (совместное появление трамваев двух маршрутов) представляет собой произведение двух событий А и В , что символически записывается следующим образом:

Допустим, что два врача порознь осматривают пациента с целью выявления конкретного заболевания. В процессе осмотров возможно появление следующих событий:

Обнаружение заболеваний первым врачом (А );

Необнаружение заболевания первым врачом ();

Обнаружение заболевания вторым врачом (В );

Необнаружение заболевания вторым врачом ().

Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров ровно один раз. Это событие может реализоваться двумя способами:

Заболевание обнаружит первый врач (А ) и не обнаружит второй ();

Заболеваний не обнаружит первый врач () и обнаружит второй (B ).

Обозначим рассматриваемое событие через и запишем символически:

Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров дважды (и первым, и вторым врачом). Обозначим это событие через и запишем: .

Событие, заключающееся в том, что ни первый, ни второй врач заболевания не обнаружит, обозначим через и запишем: .

Основные теоремы теории вероятности

Вероятность суммы двух несовместных событий равняется сумме вероятностей этих событий.

Запишем теорему сложения символически:

Р(А + В) = Р(А)+Р(В) ,

где Р - вероятность соответствующего события (событие указывается в скобках).

Пример . У больного наблюдается желудочное кровотечение. Этот симптом регистрируется при язвенной эрозии сосуда (событие А), разрыве варикозно-расширенных вен пищевода (событие В), раке желудка (событие С), полипе желудка (событие D), геморрагическом диатезе (событие F), механической желтухе (событие Е) и конечном гастрите (событие G ).

Врач, основываясь на анализе статистических данных, присваивает каждому событию значение вероятности:

Всего врач имел 80 больных с желудочным кровотечением (n = 80), из них у 12 была язвенная эрозия сосуда (), у 6 - разрыв варикозно-расширенных вен пищевода (), у 36 - рак желудка () и т. д.

Для назначения обследования врач хочет определить вероятность того, что желудочное кровотечение связано с заболеванием желудка (событие I):

Вероятность того, что желудочное кровотечение связано с заболеванием желудка, достаточно высока, и врач может определить тактику обследования, исходя из предположения о заболевании желудка, обоснованном на количественном уровне с помощью теории вероятностей.

Если рассматриваются совместные события, вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности совместного их наступления.

Символически это записывается следующей формулой:

Если представить себе, что событие А заключается в попадании при стрельбе в мишень, заштрихованную горизонтальными полосами, а событие В - в попадании в мишень, заштрихованную вертикальными полосами, то в случае несовместных событий по теореме сложения вероятность суммы равна сумме вероятностей отдельных событий. Если же эти события совместны, то есть некоторая вероятность, соответствующая совместному наступлению событий А и В . Если не ввести поправку на вычитаемое Р(АВ) , т.е. на вероятность совместного наступления событий, то эта вероятность будет учтена дважды, так как площадь, заштрихованная и горизонтальными, и вертикальными линиями, является составной частью обеих мишеней и будет учитываться как в первом, так и во втором слагаемом.

На рис. 1 дана геометрическая интерпретация, наглядно иллюстрирующая данное обстоятельство. В верхней части рисунка помещены непересекающиеся мишени, являющиеся аналогом несовместных событий, в нижней части - пересекающиеся мишени, являющиеся аналогом совместных событий (одним выстрелом можно попасть сразу и в мишень А, и в мишень В).

Прежде чем перейти к теореме умножения, необходимо рассмотреть понятия независимых и зависимых событий и условной и безусловной вероятностей.

Независимым от события В называется такое событие А, вероятность появления которого не зависит от появления или непоявления события В.

Зависимым от события В называется такое событие А, вероятность появления которого зависит от появления или непоявления события В.

Пример . В урне находятся 3 шара, 2 белых и 1 черный. При выборе шара наугад вероятность выбрать белый шар (событие А) равна: Р(А) = 2/3, а черный (событие В)Р(В) = 1/3. Мы имеем дело со схемой случаев, и вероятности событий рассчитываются строго по формуле. При повторении опыта вероятности появления событий А и В остаются неизменными, если после каждого выбора шар возвращается в урну. В этом случае события А и В являются независимыми. Если же выбранный в первом опыте шар в урну не возвращается, то вероятность события (А) во втором опыте зависит от появления или непоявления события (В) в первом опыте. Так, если в первом опыте появилось событие В (выбран черный шар), то второй опыт проводится при наличии в урне 2 белых шаров и вероятность появления события А во втором опыте равна: Р(А) = 2/2= 1.

Если же в первом опыте не появилось событие В(выбран белый шар), то второй опыт проводится при наличии в урне одного белого и одного черного шаров и вероятность появления события А во втором опыте равна: Р(А)=1/2. Очевидно, в этом случае события А и В тесно связаны и вероятности их появления являются зависимыми.

Условной вероятностью события А называется вероятность его появления при условии, что появилось событие В. Условная вероятность символически обозначается Р(А/В).

Если вероятность появления события А не зависит от появления события В , то условная вероятность события А равна безусловной вероятности:

Если вероятность появления события А зависит от появления события В, то условная вероятность никогда не может быть равна безусловной вероятности:

Выявление зависимости различных событий между собой имеет большое значение в решении практических задач. Так, например, ошибочное предположение о независимости появления некоторых симптомов при диагностике пороков сердца по вероятностной методике, разработанной в Институте сердечно-сосудистой хирургии им. А. Н. Бакулева, обусловило около 50% ошибочных диагнозов.

Сумма всех вероятностей событий выборочного пространства равняется 1. Например, если экспериментом является подбрасывание монеты при Событии А = «орел» и Событии В = «решка», то А и В представляют собой все выборочное пространство. Значит, Р(А) +Р(В) = 0.5 + 0.5 = 1 .

Пример. В ранее предложенном примере вычисления вероятности извлечения из кармана халата красной ручки (это событие А), в котором лежат две синих и одна красная ручка, Р(А) = 1/3 ≈ 0.33, вероятность противоположного события – извлечения синей ручки – составит

Прежде чем перейти к основным теоремам, введем еще два более сложных понятия - сумма и произведение событий. Эти понятия отличны от привычных понятий суммы и произведения в арифметике. Сложение и умножение в теории вероятностей - символические операции, подчиненные определенным правилам и облегчающие логическое построение научных выводов.

Суммой нескольких событий является событие, заключающееся в появлении хотя бы одного из них. То есть, суммой двух событий А и В называется событие С, состоящее в появлении или события А, или события В, или событий А и В вместе.

Например, если пассажир ждет на остановке трамваев какой-либо из двух маршрутов, то нужное ему событие заключается в появлении трамвая первого маршрута (событие А), или трамвая второго маршрута (событие В), или в совместном появлении трамваев первого и второго маршрутов (событие С). На языке теории вероятностей это значит, что нужное пассажиру событие D заключается в появлении или события А, или события В, или события С, что символически запишется в виде:

D = A + B + C

Произведением двух событий А и В является событие, заключающееся в совместном появлении событий А и В . Произведением нескольких событий называется совместное появление всех этих событий.

В приведенном примере с пассажиром событие С (совместное появление трамваев двух маршрутов) представляет собой произведение двух событий А и В , что символически записывается следующим образом:

Допустим, что два врача порознь осматривают пациента с целью выявления конкретного заболевания. В процессе осмотров возможно появление следующих событий:

Обнаружение заболеваний первым врачом (А );

Необнаружение заболевания первым врачом ();

Обнаружение заболевания вторым врачом (В );

Необнаружение заболевания вторым врачом ().

Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров ровно один раз. Это событие может реализоваться двумя способами:

Заболевание обнаружит первый врач (А ) и не обнаружит второй ();

Заболеваний не обнаружит первый врач () и обнаружит второй (B ).


Обозначим рассматриваемое событие через и запишем символически:

Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров дважды (и первым, и вторым врачом). Обозначим это событие через и запишем: .

Событие, заключающееся в том, что ни первый, ни второй врач заболевания не обнаружит, обозначим через и запишем: .