Графическое решение систем линейных уравнений. Графический способ решения систем уравнений

Рассмотрим следующие уравнения:

1. 2*x + 3*y = 15;

2. x 2 + y 2 = 4;

4. 5*x 3 + y 2 = 8.

Каждое из представленных выше уравнений является уравнением с двумя переменными. Множество точек координатной плоскости, координаты которых обращают уравнение в верное числовое равенство, называется графиком уравнения с двумя неизвестными .

График уравнения с двумя переменными

Уравнения с двумя переменными имеют большое многообразие графиков. Например, для уравнения 2*x + 3*y = 15 графиком будет прямая линия, для уравнения x 2 + y 2 = 4 графиком будет являться окружность с радиусом 2, графиком уравнения y*x = 1 будет являться гипербола и т.д.

У целых уравнений с двумя переменными тоже существует такое понятие, как степень. Определяется эта степень, так же как для целого уравнения с одной переменной. Для этого приводят уравнение к виду, когда левая часть есть многочлен стандартного вида, а правая - нуль. Это осуществляется путем равносильных преобразований.

Графический способ решения систем уравнения

Разберемся, как решать системы уравнений, которые будут состоять из двух уравнений с двумя переменными. Рассмотрим графический способ решения таких систем.

Пример 1. Решить систему уравнений:

{ x 2 + y 2 = 25

{y = -x 2 + 2*x + 5.

Построим графики первого и второго уравнений в одной системе координат. Графиком первого уравнения будет окружность с центром в начале координат и радиусом 5. Графиком второго уравнения будет являться парабола с ветвями, опущенными вниз.

Все точки графиков будут удовлетворять каждый своему уравнению. Нам же необходимо найти такие точки, которые будут удовлетворять как первому, так и второму уравнению. Очевидно, что это будут точки, в которых эти два графика пересекаются.

Используя наш рисунок находим приблизительные значения координат, в которых эти точки пересекаются. Получаем следующие результаты:

A(-2,2;-4,5), B(0;5), C(2,2;4,5), D(4,-3).

Значит, наша система уравнений имеет четыре решения.

x1 ≈ -2,2; y1 ≈ -4,5;

x2 ≈ 0; y2 ≈ 5;

x3 ≈ 2,2; y3 ≈ 4,5;

x4 ≈ 4,y4 ≈ -3.

Если подставить данные значения в уравнения нашей системы, то можно увидеть, что первое и третье решение являются приближенными, а второе и четвертое - точными. Графический метод часто используется, чтобы оценить количество корней и примерные их границы. Решения получаются чаще приближенными, чем точными.

Одним из способов решения уравнений является графический способ. Он основан на построении графиков функции и определения точек их пересечения. Рассмотрим графический способ решения квадратного уравнения a*x^2+b*x+c=0.

Первый способ решения

Преобразуем уравнение a*x^2+b*x+c=0 к виду a*x^2 =-b*x-c. Строим графики двух функций y= a*x^2 (парабола) и y=-b*x-c (прямая). Ищем точки пересечения. Абсциссы точек пересечения и будут являться решением уравнения.

Покажем на примере: решить уравнение x^2-2*x-3=0.

Преобразуем его в x^2 =2*x+3. Строим в одной системе координат графики функции y= x^2 и y=2*x+3.

Графики пересекаются в двух точках. Их абсциссы будут являться корнями нашего уравнения.

Решение по формуле

Для убедительности проверим это решение аналитическим путем. Решим квадратное уравнение по формуле:

D = 4-4*1*(-3) = 16.

X1= (2+4)/2*1 = 3.

X2 = (2-4)/2*1 = -1.

Значит, решения совпадают.

Графический способ решения уравнений имеет и свой недостаток, с помощью него не всегда можно получить точное решение уравнения. Попробуем решить уравнение x^2=3+x.

Построим в одной системе координат параболу y=x^2 и прямую y=3+x.

Опять получили похожий рисунок. Прямая и парабола пересекаются в двух точках. Но точные значения абсцисс этих точек мы сказать не можем, только лишь приближенные: x≈-1,3 x≈2,3.

Если нас устраивают ответы такой точности, то можно воспользоваться этим методом, но такое бывает редко. Обычно нужны точные решения. Поэтому графический способ используют редко, и в основном для проверки уже имеющихся решений.

Нужна помощь в учебе?



Предыдущая тема:

, Конкурс «Презентация к уроку»

Презентация к уроку















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  • Обобщить графический способ решения систем уравнений;
  • Сформировать умения графически решать системы уравнений второй степени, привлекая известные учащимся графики;
  • Дать наглядные представления, что система двух уравнений с двумя переменными второй степени может иметь от одного до четырех решений, или не иметь решений.

Структура урока:

  1. Орг. момент
  2. Актуализация знаний учащихся.
  3. Объяснение нового материала.
  4. Закрепление изученного материала. Работа в табличном процессоре Excel с последующей проверкой..
  5. Домашнее задание.

Ход урока

1. Организационный момент

Объявляется тема, цель, ход урока.

2. Актуализация знаний.

1) Повторить элементарные функции и их графики.

Учитель математики задает вопрос об изученных ранее элементарных функциях и их графиках и через проектор обобщает ответы учащихся.

2) Устная работа.

Учитель проводит устную работу с использованием проектора с целью подготовки учащихся к восприятию новой темы.

3. Объяснение нового материала.

1) Объяснение нового материала через проектор и разбор решения стандартной математической задачи.

2) Учитель информатики и ИКТ через проектор напоминает учащимся алгоритм решения системы уравнений графическим способом в табличном процессоре Excel.

4. Закрепление изученного материала. Работа в табличном процессоре Excel с последующей проверкой.

1) Учитель предлагает учащимся пересесть за компьютеры и выполнить задания в табличном процессоре Excel.

2) Решение каждой системы уравнений проверяется через проектор.

5. Домашнее задание.

Список используемой литературы:

  1. Учебник для 9 класса общеобразовательных учреждений «Алгебра», авторы Ю.Н. Макарычев Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, «Просвещение», ОАО «Московские учебники», Москва, 2008 г.
  2. Поурочное планирование по алгебре к учебнику Ю.Н.Макарычева и др. «Алгебра. 9 класс», «Экзамен», Москва, 2008 г.
  3. Алгебра. 9 класс. Поурочные планы к учебнику Ю.Н.Макарычева и др., автор-составитель С.П.Ковалева, Волгоград, 2007 г.
  4. Тетрадь-конспект по алгебре, авторы Ершова А.П., Голобородько В.В., Крижановский А.Ф., ИЛЕКСА, Москва, 2006 г.
  5. Учебник Информатика. Базовый курс. 9 класс, автор Угринович Н.Д., БИНОМ. Лаборатория знаний, 2010 г.
  6. Современные открытые уроки информатики 8-11 классы, авторы В.А. Молодцов, Н.Б. Рыжикова, Феникс, 2006 г.

Муниципальное казенное общеобразовательное учреждение

Поповская средняя общеобразовательная школа

имени Героя Советского Союза Н.К. Горбанева

Открытый урок

учителя математики

Ворониной Веры Владимировны,

по математике в 9 классе

по теме: «Графический способ решения систем уравнений»

Тип урока: урок изучения нового материала.

2017/2018 учебный год

Графический способ решения систем уравнений. 9-й класс

Воронина Вера Владимировна, учитель математики.

ли урока:

дидактические:

открыть совместнос учащимися новый способ решения систем уравнений;

вывести алгоритм решения систем уравнений графическим способом;

уметь определять сколько решений имеет система уравнений;

учить находить решения системы уравнений графическим способом;

повторить построение графиков элементарных функций;

создать условия для контроля (самоконтроля) учащихся:

воспитательные:

воспитание ответственного отношения к труду,

аккуратности ведения записей.

Ход урока.

I. Организационный момент.

Что такое функция? (слайд 3-11)

Что называется графиком функции?

Какие виды функций вы знаете?

Какой формулой задается линейная функция? Что является графиком линейной функции?

Какой формулой задается прямая пропорциональность? Что является ее графиком?

Какой формулой задается обратная пропорциональность? Что является ее графиком?

Какой формулой задается квадратичная функция? Что является ее графиком?

Каким уравнением задается уравнение окружности?

Что называют графиком уравнения с двумя переменными; (слайд 12)

Организуется знакомство с уравнениями, используемыми в высшей математике и их графиками (строфоидой, Лемнискатой Бернулли, астроидой, кардиоидой). (слайд 13-16)

Рассказ учителя сопровождается показом слайдов с данными графиками.

Выразите переменную у через переменную х:
а) у - х² = 0
б) х + у + 2 = 0
в) 2х - у + 3 = 0
г) ху = -12

Является ли пара чисел (1; 0) решением уравнения
а) х² +у = 1;
б) ху + 3 = х;
в) у(х +2) = 0.

Что является решением системы уравнений с двумя переменными?

Какая из пар чисел является решением системы уравнений
а) (6; 3)
б) (- 3; - 6)
в) (2; - 1)
г) (3; 0)

Из каких уравнений можно составить систему уравнений, решением которой будет пара чисел (2; 1)
а) 2х - у = 3
б) 3х - 2у = 5
в) х² + у² = 4
г) ху = 2

III. Актуализация знаний учащихся по изученному материалу . (слайд 20, 21)

Сегодня мы повторим и закрепим один из способов решения систем уравнений. Закрепление изученного материала осуществляется с помощью наглядного восприятия (на слайде представлено графическое решение системы уравнений):

Графиком уравнения с двумя переменными называется множество точек координатной плоскости, координаты которых обращают уравнение в верное равенство. Графики уравнений с двумя неизвестными весьма разнообразны.

Вопросы по данному слайду:

Что является графиком уравнения x² + y²=25?

Что является графиком уравнения y = - x² +2x +5?

Координаты любой точки окружности будут удовлетворять уравнению x² + y²=25, координаты любой точки параболы будут удовлетворять уравнению y = - x² +2x +5.

Координаты каких точек будут удовлетворять и первому и второму уравнениям?

Сколько точек пересечения у данных графиков?

Сколько решений имеет данная система?

Назвать эти решения?

Что нужно сделать, чтобы графически решить систему уравнений с двумя переменными?

Предлагается слайд, на котором приведен алгоритм графического способа решения систем уравнений с двумя неизвестными.

Графический способ применим к решению любой системы, но с помощью графиков уравнений можно приближенно находить решения системы. Лишь некоторые найденные решения системы могут оказаться точными. В этом можно убедиться, подставив их координаты в уравнения системы.

IV. Применение изученного способа решения систем уравнений.

1. Решить графически систему уравнений (слайд 23)

Что является графиком уравнения ху = 3?

Что является графиком уравнения 3х - у =0?

2. Запишите систему, определяемую этими уравнениями и ее решение. (слайд 24)

Постановка наводящих вопросов:

Запишите систему, определяемую данными уравнениями?

Сколько точек пересечения имеют данные графики?

Сколько решений имеет данная система уравнений?

Назвать решения данной системы уравнений?

3. Выполнение задание из ГИА (слайд 25).

4. Решить графически систему уравнений (слайд 26)

Задание выполняется учащимися в тетрадях. Решение проверяется.

V. Итоги урока.

Что называется решением системы уравнений с двумя переменными?

С каким способом решения систем уравнений с двумя переменными вы познакомились?

В чём его суть?

Дает ли данный способ точные результаты?

В каком случае система уравнений не будет иметь решений?

VI . Домашнее задание.

П. 18, №№ 420 (237), 425 (240)

Видеоурок «Графический способ решения систем уравнений» представляет учебный материал для освоения данной темы. Материал содержит общее понятие о решении системы уравнений, а также подробное объяснение на примере, каким образом решается система уравнений графическим способом.

Наглядное пособие использует анимацию для более удобного и понятного выполнения построений, а также разные способы выделения важных понятий и деталей для углубленного понимания материала, лучшего его запоминания.

Видеоурок начинается с представления темы. Ученикам напоминается, что такое система уравнений, и с какими системами уравнений им уже пришлось ознакомиться в 7 классе. Ранее ученикам приходилось решать системы уравнений вида ах+by=c. Углубляя понятие о решении систем уравнений и с целью формирования умения их решать в данном видеоуроке рассматривается решение системы, состоящей из двух уравнений второй степени, а также из одного уравнения второй степени, а второго - первой степени. Напоминается о том, что такое решение системы уравнений. Определение решения системы как пары значений переменных, обращающих ее уравнения при подстановке в верное равенство, выводится на экран. В соответствии с определением решения системы, конкретизируется задача. На экран выведено для запоминания, что решить систему - означает, найти подходящие решения или доказать их отсутствие.

Предлагается освоить графический способ решения некоторой системы уравнений. Применение данного способа рассматривается на примере решения системы, состоящей из уравнений х 2 +у 2 =16 и у=-х 2 +2х+4. Графическое решение системы начинается с построения графика каждого из данных уравнений. Очевидно, графиком уравнения х 2 +у 2 =16 будет окружность. Точки, принадлежащие данной окружности, являются решением уравнения. Рядом с уравнением строится на координатной плоскости окружность радиусом 4 с центром О в начале координат. График второго уравнения представляет собой параболу, ветви которой опущены вниз. На координатной плоскости построена данная парабола, соответствующая графику уравнения. Любая точка, принадлежащая параболе, представляет собой решение уравнения у=-х 2 +2х+4. Объясняется, что решение системы уравнений - точки на графиках, принадлежащие одновременно графикам обоих уравнений. Это значит, что точки пересечения построенных графиков будут являться решениями системы уравнений.

Отмечается, что графический метод состоит в нахождении приближенного значения координат точек, находящихся на пересечении двух графиков, которые отражают множество решений каждого уравнения системы. На рисунке отмечаются координат найденных точек пересечения двух графиков: А, B, C, D[-2;-3,5]. Данные точки - решения системы уравнений, найденные графическим способом. Проверить их правильность можно, подставив в уравнение и получив справедливое равенство. После подстановки точек в уравнение, видно, что часть точек дает точное значение решения, а часть представляет приближенное значение решения уравнения: х 1 =0, у 1 =4; х 2 =2, у 2 ≈3,5; х 3 ≈3,5, у 3 =-2; х 4 =-2, у 4 ≈-3,5.

Видеоурок подробно объясняет суть и применение графического способа решения системы уравнений. Это дает возможность использовать его в качестве видеопособия на уроке алгебры в школе при изучении данной темы. Также материал будет полезен при самостоятельном изучении учениками и может помочь объяснить тему при дистанционном обучении.