A. Законы отражения. Излученный и отраженный свет

МОУ «СОШ № 87»

Отражение света

Выполнила:

Зизико Юля

Ученица 9Б класса

Руководитель:

Учитель физики

Еремина С.Н.

ЗАТО Северск

1. Введение

2. Отражение света.

3. Отражение света при любых зеркалах.

4. Перископ.

5. Заключение.

6. Список литературы.

Введение.

Моя работа называется ”Явление отражения света. Перископ”.

Я взяла эту тему, потому что она интересна тем, что объясняет многие факты отражения света с научной точки зрения. Когда я беру зеркало и смотрюсь прямо в него, то я вижу свое отражение, а когда я смотрю сбоку в него, то отражение своего я не наблюдаю. Из этого можно сделать вывод, что зеркальная поверхность имеет много интересных свойств, и мне хотелось бы узнать о них поподробнее. Например, почему при изменении положения зеркала предметы в нем отражаются по-разному и почему плоские поверхности отражают лучше, чем шероховатые.

Кроме того, меня интересовало, каким образом предмет отражается в двух зеркалах направленных отражающими поверхностями друг к другу или под небольшим углом. Это свойство зеркал используется в перископе. Мне захотелось создать свой собственный перископ и посмотреть подтвердятся

ли на практике мои предположения.

Отражение света.

Закон отражения света – это физическое явление, при котором свет, падающий из одной среды на границу раздела с другой средой, возвращается назад в первую среду.

Человек видит источник света, когда луч, исходящий из этого источника, попадает в глаз. Если же тело не является источником, то глаз может воспринимать лучи от какого-либо источника, отраженные этим телом, то есть, упавшие на поверхность этого тела и изменившие при этом направление дальнейшего распространения. Тело, отражающее лучи, становится источником отраженного света. Упавшие на поверхность тела лучи изменяют направление дальнейшего распространения. При отражении свет возвращается в ту же среду, из которой он упал на поверхность тела. Тело, отражающее лучи, становится источником отраженного света.

Когда мы слышим это слово "отражение", прежде всего, нам вспоминается зеркало. В быту чаще всего используются плоские зеркала. С помощью плоского зеркала можно провести простой опыт, чтобы установить закон, по которому происходит отражение света.

При падении света на зеркальную поверхность свет отражается, причем луч падающий, луч отраженный и нормаль к отражающей поверхности лежат в одной плоскости. Угол падения равен углу отражения: q 1 = q" 1 . Закон отражения справедлив как для плоских, так и для искривленных поверхностей.

Закон отражения (q 1 = q" 1) определяет также направление отраженного луча при пересечении светом границы раздела прозрачных сред. Интенсивность и состояние поляризации отраженного света в этом случае определяется формулами Френеля.

Рис.1. Принцип Ферма и закон отражения

Действительно, на рис. 1 DADC=DFDC, тогда согласно постулату Герона:

min(AC+CB)=min(FC+CВ)=FВ=FO+OB=AO+OB => a=b

Здесь учтено, что кратчайший путь между двумя точками (F и B) будет по прямой FB через точку О.

Заметим, что аналогичным образом из принципа Ферма можно вывести закон преломления света.

Закон отражения света.

Луч падающий, нормаль к отражающей поверхности и луч отраженный лежат в однойплоскости (рис. 2), причем углы между лучами и нормалью равны между собой:угол падения i равен углу отражения i". Этот закон также упоминается всочинениях Евклида. Установление его связано с употреблением полированныхметаллических поверхностей (зеркал), известных уже в очень отдаленную эпоху.
Рис. 2 Закон отражения. Рис. 3 Закон преломления.

Закон преломления света.

Преломление света – изменение направления распространения оптического излучения(света) при его прохождении через границу раздела однородных изотропныхпрозрачных (не поглощающих) сред с показателем преломления n 1 и n 2 . Преломление света определяется следующими двумя закономерностями:преломленный луч лежит в плоскости, проходящей через падающий луч и нормаль(перпендикуляр) к поверхности раздела; углы падения φ ипреломления χ (рис.3) связаны законом преломления Снелля:
n 1 sinφ = n 2 sinχ или = n,где n – постоянная, не зависящая от углов φ и χ. Величина n –показатель преломления, определяется свойствами обеих сред, через границураздела которых проходит свет, и зависит также от цвета лучей.Преломление света сопровождается также отражением света.На рис. 3 ход лучей света при преломлении на плоской поверхности, разделяющейдве прозрачные среды. Пунктиром обозначен отраженный луч. Угол преломленияχ больше угла падения φ; это указывает, что в данном случаепроисходит преломление из оптически более плотной первой среды в оптическименее плотную вторую (n 1 > n 2), n – нормаль кповерхности раздела.Явление преломления света было известно уже Аристотелю. Попытка установитьколичественный закон принадлежит знаменитому астроному Птолемею (120 г.н.э.), который предпринял измерение углов падения и преломления. Закон отражения и закон преломления также справедливы лишь при соблюденииизвестных условий. В том случае, когда размер отражающего зеркала или поверхности, разделяющей две среды, мал, мы наблюдаем заметные отступленияот указанных выше законов. Однако для обширной области явлений, наблюдаемые в обычных оптических приборах, все перечисленные законы соблюдаются достаточно строго.

Отражение света при любых зеркалах.

СФЕРИЧЕСКИЕ ЗЕРКАЛА

Исходя, из закона отражения можно также решать задачи о кривых зеркалах, не только тех, что вешают в комнате смеха, но о сферических зеркалах используемых на транспорте, в фонариках и прожекторах, зеркале гиперболоида инженера Гарина.

На рис. 3, 4 показаны примеры построения изображения предмета в виде стрелки в вогнутом и выпуклом сферических зеркалах. Методы построения изображений аналогичны, применяемым к тонким линзам. Так, например, параллельный пучок лучей падающих, на вогнутое зеркало, собирается в одной точке - фокусе, который находится на фокусном расстоянии f от линзы, равном половине радиуса кривизны R зеркала.

Рис. 3. Построение изображения в вогнутом сферическом зеркале

В вогнутом зеркале действительное изображение - перевернутое, оно может быть увеличенным или уменьшенным в зависимости от расстояния между предметом и зеркалом, а мнимое - прямое и увеличенное, как в собирающей линзе. В выпуклом зеркале изображение всегда мнимое, прямое и уменьшенное, как в рассеивающей линзе.

Рис. 4. Построение изображения в выпуклом сферическом зеркале

К сферическим зеркалам применима формула, аналогичная формуле тонкой линзы:

1/a+1/b=1/f=2/R,

1/a-1/b=-1/f=-2/R,

где a и b - расстояния от предмета и изображения до линзы . Первая из этих формул верна для вогнутого зеркала, вторая - для выпуклого.

ЭЛЛИПТИЧЕСКОЕ ЗЕРКАЛО

Параболическое зеркало - основной элемент телескопов- рефлекторов

При помощи таких телескопов удается изучать самые удаленные уголки Вселенной.

Спиральные галактики в созвездии Андромеды.

Для локации планет солнечной системы используют радиолокаторы, в основе которых лежит параболическое зеркало.

Радиолокация дает возможность "прощупать" рельеф поверхности планет, даже окутанных густыми облаками, сквозь которые в обычный телескоп поверхность не видна.

Радиолокационная карта Венеры.

ПЛОСКОЕ ЗЕРКАЛО

Плоские зеркала используют в таком приборе, как перископ.

Перископ

(от греч. periskopéo - смотрю вокруг, осматриваю), оптический прибор для наблюдения из укрытий (окопов, блиндажей и др.), танков, подводных лодок. Многие П. позволяют измерять горизонтальные и вертикальные углы на местности и определять расстояние до наблюдаемых объектов. Устройство и оптические характеристики П. обусловлены его назначением, местом установки и глубиной укрытия, из которого ведётся наблюдение. Простейшим является вертикальный перископ, состоящий из вертикальной зрительной трубы и 2 зеркал, установленных под углом 45° к оси трубы и образующих оптическую систему, которая преломляет световые лучи, идущие от наблюдаемого предмета, и направляет их в глаз наблюдателя. Распространены призменные перископы, в трубе которых вместо зеркал установлены прямоугольные призмы, а также телескопическая линзовая система и оборачивающая система, с помощью которых можно получать увеличенное прямое изображение. Поле зрения перископ при малом увеличении (до 1,5 раза) составляет около 40°; оно обычно уменьшается с ростом увеличения. Некоторые типы перископ позволяют вести круговой обзор.

Оптическая схема перископа

Впервые прототип перископа использовал Ливчак Иосиф Николаевич. Ливчак Иосиф Николаевич , русский изобретатель в области полиграфии, военного дела и транспорта. С 1863 жил в Вене, где издавал сатирический журнал "Страхопуд" (1863-68), а также участвовал в издании журналов "Золотая грамота" (1864-1868) и "Славянская заря" (1867-68). Л. призывал к освобождению славянских земель из-под власти Австро-Венгрии и объединению их вокруг России. В начале 70-х гг. переехал в Россию, где занялся изобретательской деятельностью. Создал матрицевыбивательную наборную машину, которая в 1875 использовалась при наборе газеты "Виленский вестник". Изобрёл прицельный станок (1886), оптический прибор диаскоп (прототип перископа), отмеченный большой золотой медалью Парижской академии. Сконструировал указатель пути и скорости движения локомотива; за эту работу Русским техническим обществом награжден золотой медалью им. А. П. Бородина (1903).

Заключение.

Изучив научную литературу и создав собственную модель перископа, я считаю, мне удалось достигнуть поставленных мною задач.

Также я считаю, что знать и применять в быту знания об отражении в плоском зеркале очень важно. Теперь я намного лучше разбираюсь в отражении света. Теперь мне будет намного проще изучать тему ”Оптика” в 11 классе.

Список литературы.

1. Мякишев Г.Я. Физика: Учебник для 11 кл. ОУ – М.:Просвещение, 2004.

2. Пинский А.А. Физика. Углубленно изучение физики: учеб. пособие. – М.:Просвещение, 1994.

3. Хилькевич С.С. Физика вокруг нас. – М.: Наука,1985

4. Сивухин Д.В. Общий курс физики. Оптика. – М.: Наука,1980

5. Учебный справочник школьника. – Москва, Дрофа, 2005

6. http://www.edu.yar.ru:8100/~pcollege/discover/99/s8/1b.html

ОТРАЖЕНИЕ СВЕТА - возникновение вторичных световых волн, распространяющихся от границы раздела двух сред "обратно" в первую среду, из к-рой первоначально падал свет. При этом по крайней мере первая среда должна быть прозрачна для падающего и отражаемого излучений. Несамосветящиеся тела становятся видимыми вследствие О. с. от их поверхностей.
Пространств. распределение интенсивности отражённого света зависит от соотношения между размерами неровностей h поверхности (границы раздела) и длиной волныпадающего излучения. Если h то О. с. направленное, или зеркальное. Когда размеры неровностей h или превышают её (шероховатые, матовые поверхности) и расположение неровностей стохастическое, О. с. - диффузное. Возможно также смешанное О. с., при к-ром часть падающего излучения отражается зеркально, а часть диффузно. Если же неровности с размерами расположены к--л. регулярным образом, то распределение отражённого света имеет особый характер, близкий к наблюдаемому при О. с. от . решётки.

Зеркальное О. с . характеризуется связью положений падающего и отражённого лучей: 1) отражённый, преломлённый и падающий лучи и нормаль к плоскости падения компланарны; 2) угол падения равен углу отражения. Совместно с законом прямолинейного распространения света эти законы составляют основу геометрической оптики . Для понимания физ. особенностей, возникающих при О. с., таких, как изменение амплитуды, фазы, используется эл--магн. теория света, в основе к-рой лежат ур-ния Максвелла. Они устанавливают связь параметров отражённого света с оптич. характеристиками вещества - оптич. постоянными п и составляющими комплексного показателя преломленияп - отношение скорости в вакууме к фазовой скорости волны в веществе, - гл. безразмерный показатель поглощения. Параметры отражённого света могут быть получены из ур-ния волны, к-рое удовлетворяет решению ур-ний Максвелла:

где Е 0 - нач. амплитуда волны, распространяющейся в поглощающей среде, - круговая частота, - длина волны, z - направление распространения волны, t - время.
Величина связана с натуральным показателем поглощения к-рый обычно определяется из традиц. фотометрич. измерений (см. Бугера - Ламберта - Бера закон) . Параметр характеризует затухание амплитуды световой волны, к-рая при прохождении расстояния, равного ослабляется в е раз.
Это расстояние может служить мерой глубины проникновения света в приграничный слой поглощающего вещества, где происходит формирование отражённой волны. В слабо поглощающем веществе (< 0,1) свет проникает на глубину порядка, а при сильном поглощении ( 0,1) глубина проникновения намного меньше. При О. с. от границы с сильно поглощающим веществом эл--магн. волна не может проникнуть в эту среду на значит. глубину, в результате чего поглощается только малая часть энергии и на малом участке пути, а большая часть отражается.
При падении световой волны по нормали к идеально плоской поверхности амплитуды отражённой и преломлённой световых волн могут быть получены из ур-ния волны в предположении непрерывности тангенциальных составляющих электрич. вектора при переходе из одной среды в другую. С учётом оптич. свойств границы раздела сред непосредственно получают связь между амплитудами волн падающей, отражённой и прошедшей. При нормальном падении света амплитудный коэф. отражения

где n 1 и - показатели преломления граничащих сред.

Энергетич. коэф. отражения, характеризующий мощность отражённой волны R = | r | 2 , а для границы воздух - среда

Рис. 3. Спектры коэффициентов отражения диэлектрика (-кварц), металла (Аu) и монокристаллического графита.

В поглощающих средах (хорошо проводящих металлах) падающая волна поглощается практически полностью с тонком (~10 нм) слое; энергия её превращается в энергию движения электронной плазмы. Движущиеся электроны излучают, в результате чего формируется отражённая волна, уносящая до 99% энергии (подробнее см. Металлооптика ).
Спектры отражения в УФ-, видимой и ИК-областях типичного представителя металлов (Аu) и диэлектриков ("-кварц) представлены на рис. 3. Хорошо виден общий резонансный характер О. с. в УФ-области у -кварца и золота, тогда как в ИК-области обнаруживаются качеств. различия: у-кварца no-прежпему ярко выражена резонансная структура полос в спектре О. с., а у золота - неселективиое отражение, характерное для свободных носителей электрич. заряда. В промежуточной - видимой области в спектре О. с. золота с ростом происходит быстрое нарастание коэф. отражения. Спектр О. с. полуметалла (графит) в УФ-области имеет те же общие черты, а в ИК-области носит промежуточный характер, приближаясь с ростом к спектру металлов. Резонансные колебания кристаллич. решётки графита выражены в спектре О. с. в виде весьма слабых полос на фоне интенсивного неселективного отражения, обусловленного свободными носителями.
При рассмотренном выше О. с. предполагалось наличие идеально гладкой плоской отражающей границы. Реальная поверхность имеет микронеровности конечной высоты, трещины, адсорбиров. воду и т. п. Для точного измерения параметров отражённого света, на к-рые влияют тончайшие поверхностные слои, необходимы исключительно тщательная хим. очистка поверхности и устранение дефектов и нарушений структуры, вызванных обработкой. Наличие микрорельефа приводит к нерегулярному рассеянию света по разным направлениям, причём для высококачеств. полировки потери на рассеяние могут составлять ~ 2 х 10 -5 от мощности падающего света. Если высота микронеровностей h то отражение диффузное; при h отражение зеркальное. Коэф. зеркального О. с. от поверхности при нормальном падении в хорошем приближении описывается ф-лой где R 0 - отражение идеально гладкой поверхности. Металлич. зеркало, у к-рого потери на диффузное отражение составляют не более 0,1%, должно иметь h в видимом диапазоне. При наклонном падении и при переходе в ИК-область требования к качеству полировки снижаются.
Диффузное О. с. представляет собой рассеивание света во всевозможных направлениях телом, к-рое имеет шероховатую поверхность либо обладает внутр. неоднородной структурой, ведущей к в его объёме. О. с. от шероховатой поверхности, представляющей собой совокупность различным образом ориентированных площадок с размерами сводится к отражению света этими площадками в соответствии с ф-лами Френеля; угл. распределение яркости и поляризации диффузно отражённого света целиком определяется характером стохастич. распределения площадок по ориентациям.
Если О. с. обусловлено рассеянием на неоднородно-стях внутр. структуры самого тела (порошки, эмульсии, облака и т. п.), то явление носит объёмный характер и его закономерности определяются эффектами многократного рассеяния света, проникшего в тело. В этом случае даже слабое поглощение внутри тела приводит к резкому ослаблению многократно рассеянного света и уменьшению отражат. способности. Для очень тонких или сильно поглощающих сред существенно только однократное рассеяние, b вследствие чего отражат. способность пропори,. (и - объёмные коэф. рассеяния и поглощения). Т. к. и зависят от степени дисперсности рассеивающего вещества, то и отражат. способность зависит от дисперсности: увеличивается по мере измельчения рассеивающих частиц. Поляризация отражённого света также зависит от величины Угл. распределение отражённого света определяется видом матрицы рассеяния и меняется с изменением и оптич. толщины слоя.
Для поверхностей, равномерно рассеивающих свет, часто пользуются (напр., при светотехн. расчётах) Ламберта законом ,согласно к-рому яркость диффузио отражающего тела пропорц. его освещённости и не зависит от направления, в к-ром она рассматривается. Однако закон этот выполняется очень приближённо, лишь для тел с высокой отражат. способностью и под углами наблюдения < 60°.

О. с. от нелинейных сред . При больших мощностях световых (лазерных) полей (10 8 - 10 10 Вт/см 2) обнаруживается нелинейность среды, к-рая может сказаться на О. с. Так, напр.. при отражении от нелинейной среды (монокристалл CaAs) может возникать 2-я гармоника, если среда прозрачна для осн. частоты, но поглощает гармонику. При падении на нелинейную среду двух волн с частотами и возникает отражённая волна на суммарной частоте (кроме обычных отражённых волн и). Интенсивность гармоники в отражённом свете имеет заметную величину при соблюдении фазового синхронизма . Необходимые условия синхронизма могут осуществляться разными способами. Напр., при отражении от кристалла подбирают условия (выбором ориентации осей), когда осн. волна - обыкновенная, а 2-я гармоника - необыкновенная; тогда в нек-ром направлении скорость гармоники необыкновенной волны равна скорости основной обыкновенной. Благоприятные условия для синхронизма получаются при полном внутр. отражении, когда направление согласования фаз в кристалле лежит в отражающей плоскости, а угол падения соответствует для 2-й гармоники. При отражении мощной падающей волны наблюдается ряд параметрич. эффектов, связанных с оптич. Керра эффектом электрострикцией , с локальными нагревами и т. п. и приводящих к отступлению от ф-л Френеля (см. Нелинейная оптика ).
Все несветящиеся предметы видны благодаря диффузному О. с. Если поверхность отражает зеркально, то видна не сама граница раздела, а изображения предметов, полученные при отражении от этой поверхности. О. с. может оказывать и вредное воздействие, приводя, напр., к появлению "бликов", уменьшению яркости и контрастности изображения. В этих случаях стараются уменьшить О. с., нанося на поверхность оптич. деталей спец. тонкие слои (см. Просветление оптики ).
О. с. широко используется для определения оптич. характеристик вещества, выяснения его структуры, свойств, особенно в тех случаях, когда исследования на пропускание трудны или невозможны; в , напр. в методе нарушенного полного внутр. отражения, к-рый даёт информацию о структуре поверхностных слоев, что важно для теории адсорбции, поверхностных и граничных явлений, катализа и т. п.

Лит.: Соколов А. В., Оптические свойства металлов, М., 1961; Борн М., Вольф Э. . Основы оптики, пер. с англ., 2 изд., М., 1973; Кизель В. А., Отражение света , М., 1973; Золотарев В. М., Морозов В. Н., Смирнова Е. В.. Оптические постоянные природных и технических сред. Справочник, Л., 1984.

В. М. Золотарёв .



На границе раздела двух различных сред, если эта граница раздела значительно превышает длину волны, происходит изменение направления распространения света: часть световой энергии возвращается в первую среду, то есть отражается , а часть проникает во вторую среду и при этом преломляется . Луч АО носит название падающий луч , а луч OD – отраженный луч (см. рис. 1.3). Взаимное расположение этих лучей определяют законы отражения и преломления света .

Рис. 1.3. Отражение и преломление света.

Угол α между падающим лучом и перпендикуляром к границе раздела, восстановленным к поверхности в точке падения луча, носит название угол падения .

Угол γ между отражённым лучом и тем же перпендикуляром, носит название угол отражения .

Каждая среда в определённой степени (то есть по своему) отражает и поглощает световое излучение. Величина, которая характеризует отражательную способность поверхности вещества, называется коэффициент отражения . Коэффициент отражения показывает, какую часть принесённой излучением на поверхность тела энергии составляет энергия, унесённая от этой поверхности отражённым излучением. Этот коэффициент зависит от многих причин, например, от состава излучения и от угла падения. Свет полностью отражается от тонкой плёнки серебра или жидкой ртути, нанесённой на лист стекла.

Законы отражения света


Законы отражения света были найдены экспериментально ещё в 3 веке до нашей эры древнегреческим учёным Евклидом. Также эти законы могут быть получены как следствие принципа Гюйгенса, согласно которому каждая точка среды, до которой дошло возмущение, является источником вторичных волн. Волновая поверхность (фронт волны) в следующий момент представляет собой касательную поверхность ко всем вторичным волнам. Принцип Гюйгенса является чисто геометрическим.

На гладкую отражательную поверхность КМ (рис. 1.4) падает плоская волна, то есть волна, волновые поверхности которой представляют собой полоски.

Рис. 1.4. Построение Гюйгенса.

А 1 А и В 1 В – лучи падающей волны, АС – волновая поверхность этой волны (или фронт волны).

Пока фронт волны из точки С переместится за время t в точку В, из точки А распространится вторичная волна по полусфере на расстояние AD = CB, так как AD = vt и CB = vt, где v – скорость распространения волны.

Волновая поверхность отражённой волны – это прямая BD, касательная к полусферам. Дальше волновая поверхность будет двигаться параллельно самой себе по направлению отражённых лучей АА 2 и ВВ 2 .

Прямоугольные треугольники ΔАСВ и ΔADB имеют общую гипотенузу АВ и равные катеты AD = CB. Следовательно, они равны.

Углы САВ = = α и DBA = = γ равны, потому что это углы со взаимно перпендикулярными сторонами. А из равенства треугольников следует, что α = γ .

Из построения Гюйгенса также следует, что падающий и отражённый лучи лежат в одной плоскости с перпендикуляром к поверхности, восстановленным в точке падения луча.

Законы отражения справедливы при обратном направлении хода световых лучей. В следствие обратимости хода световых лучей имеем, что луч, распространяющийся по пути отражённого, отражается по пути падающего.

Большинство тел лишь отражают падающее на них излучение, не являясь при этом источником света. Освещённые предметы видны со всех сторон, так как от их поверхности свет отражается в разных направлениях, рассеиваясь. Это явление называется диффузное отражение или рассеянное отражение . Диффузное отражение света (рис. 1.5) происходит от всех шероховатых поверхностей. Для определения хода отражённого луча такой поверхности в точке падения луча проводится плоскость, касательная к поверхности, и по отношению к этой плоскости строятся углы падения и отражения.

Рис. 1.5. Диффузное отражение света.

Например, 85% белого света отражается от поверхности снега, 75% - от белой бумаги, 0,5% - от чёрного бархата. Диффузное отражение света не вызывает неприятных ощущений в глазу человека, в отличие от зеркального.

– это когда падающие на гладкую поверхность под определённым углом лучи света отражаются преимущественно в одном направлении (рис. 1.6). Отражающая поверхность в этом случае называется зеркало (или зеркальная поверхность ). Зеркальные поверхности можно считать оптически гладкими, если размеры неровностей и неоднородностей на них не превышают длины световой волны (меньше 1 мкм). Для таких поверхностей выполняется закон отражения света.

Рис. 1.6. Зеркальное отражение света.

Плоское зеркало – это зеркало, отражающая поверхность которого представляет собой плоскость. Плоское зеркало даёт возможность видеть предметы, находящиеся перед ним, причём эти предметы кажутся расположенными за зеркальной плоскостью. В геометрической оптике каждая точка источника света S считается центром расходящегося пучка лучей (рис. 1.7). Такой пучок лучей называется гомоцентрическим . Изображением точки S в оптическом устройстве называется центр S’ гомоцентрического отражённого и преломлённого пучка лучей в различных средах. Если свет, рассеянный поверхностями различных тел, попадает на плоское зеркало, а затем, отражаясь от него, падает в глаз наблюдателя, то в зеркале видны изображения этих тел.

Рис. 1.7. Изображение, возникающее с помощью плоского зеркала.

Изображение S’ называется действительным, если в точке S’ пересекаются сами отражённые (преломлённые) лучи пучка. Изображение S’ называется мнимым, если в ней пересекаются не сами отражённые (преломлённые) лучи, а их продолжения. Световая энергия в эту точку не поступает. На рис. 1.7 представлено изображение светящейся точки S, возникающее с помощью плоского зеркала.

Луч SO падает на зеркало КМ под углом 0°, следовательно, угол отражения равен 0°, и данный луч после отражения идёт по пути OS. Из всего множества попадающих из точки S лучей на плоское зеркало выделим луч SO 1 .

Луч SO 1 падает на зеркало под углом α и отражается под углом γ (α = γ ). Если продолжить отражённые лучи за зеркало, то они сойдутся в точке S 1 , которая является мнимым изображением точки S в плоском зеркале. Таким образом, человеку кажется, что лучи выходят из точки S 1 , хотя на самом деле лучей, выходящих их этой точки и попадающих в глаз, не существует. Изображение точки S 1 расположено симметрично самой светящейся точке S относительно зеркала КМ. Докажем это.

Луч SB, падающий на зеркало под углом 2 (рис. 1.8), согласно закону отражения света отражается под углом 1 = 2.

Рис. 1.8. Отражение от плоского зеркала.

Из рис. 1.8 видно, что углы 1 и 5 равны – как вертикальные. Суммы углов 2 + 3 = 5 + 4 = 90°. Следовательно, углы 3 = 4 и 2 = 5.

Прямоугольные треугольники ΔSOB и ΔS 1 OB имеют общий катет ОВ и равные острые углы 3 и 4, следовательно, эти треугольники равны по стороне и двум прилежащим к катету углам. Это означает, что SO = OS 1 , то есть точка S 1 расположена симметрично точке S относительно зеркала.

Для того чтобы найти изображение предмета АВ в плоском зеркале, достаточно опустить перпендикуляры из крайних точек предмета на зеркало и, продолжив их за пределы зеркала, отложить за ним расстояние, равное расстоянию от зеркала до крайней точки предмета (рис. 1.9). Это изображение будет мнимым и в натуральную величину. Размеры и взаимное расположение предметов сохраняются, но при этом в зеркале левая и правая стороны у изображения меняются местами по сравнению с самим предметом. Параллельность падающих на плоское зеркало световых лучей после отражения также не нарушается.

Рис. 1.9. Изображение предмета в плоском зеркале.

В технике часто применяют зеркала со сложной кривой отражающей поверхностью, например, сферические зеркала. Сферическое зеркало – это поверхность тела, имеющая форму сферического сегмента и зеркально отражающая свет. Параллельность лучей при отражении от таких поверхностей нарушается. Зеркало называют вогнутым , если лучи отражаются от внутренней поверхности сферического сегмента. Параллельные световые лучи после отражения от такой поверхности собираются в одну точку, поэтому вогнутое зеркало называют собирающим . Если лучи отражаются от наружной поверхности зеркала, то оно будет выпуклым . Параллельные световые лучи рассеиваются в разные стороны, поэтому выпуклое зеркало называют рассеивающим .

отражение света

возвращение световой волны при ее падении на поверхность раздела двух сред с различными показателями преломления "обратно" в первую среду. Различают отражение света зеркальное (размеры l неровностей на поверхности раздела меньше длины световой волны?) и диффузное (l ? ?). Наблюдаемое отражение света - комбинация этих двух предельных случаев. Благодаря отражению света мы видим объекты, не излучающие свет.

Отражение света

явление, заключающееся в том, что при падении света (оптического излучения) из одной среды на границу её раздела со 2-й средой взаимодействие света с веществом приводит к появлению световой волны, распространяющейся от границы раздела «обратно» в 1-ю среду. (При этом по крайней мере 1-я среда должна быть прозрачна для падающего и отражаемого излучения.) Несамосветящиеся тела становятся видимыми вследствие О. с. от их поверхностей. Пространственное распределение интенсивности отражённого света определяется отношением размеров неровностей поверхности (границы раздела) к длине волны l падающего излучения. Если неровности малы по сравнению с l, имеет место правильное, или зеркальное, О. с. Когда размеры неровностей соизмеримы с l или превышают её (шероховатые поверхности, матовые поверхности) и расположение неровностей беспорядочно, О. с. диффузно. Возможно также смешанное О. с., при котором часть падающего излучения отражается зеркально, а часть ≈ диффузно. Если же неровности с размерами ~ l и более расположены закономерно (регулярно), распределение отражённого света имеет особый характер, близкий к наблюдаемому при О. с. от дифракционной решётки. О. с. тесно связано с явлениями преломления света (при полной или неполной прозрачности отражающей среды) и поглощения света (при её неполной прозрачности или непрозрачности). Зеркальное О. с. отличает определённая связь положений падающего и отражённого лучей:

    отражённый луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности;

    угол отражения равен углу падения j. Интенсивность отражённого света (характеризуемая отражения коэффициентом) зависит от j и поляризации падающего пучка лучей (см. Поляризация света), а также от соотношения преломления показателей n2 и n1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды ≈ диэлектрика) выражают Френеля формулы. Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен (n2 ≈ n1)2/(n2 + n1)2; в очень важном частном случае нормального падения из воздуха или стекла на границу их раздела (nвозд » 1,0; ncт = 1,5) он составляет » 4%.

    Характер поляризации отражённого света меняется с изменением j и различен для компонент падающего света, поляризованных параллельно (р-компонента) и перпендикулярно (s-компонента) плоскости падения. Под плоскостью поляризации при этом понимается, как обычно, плоскость колебаний электрического вектора световой волны. При углах j, равных так называемому углу Брюстера (см. Брюстера закон), отражённый свет становится полностью поляризованным перпендикулярно плоскости падения (р-составляющая падающего света полностью преломляется в отражающую среду; если эта среда сильно поглощает свет, то преломленная р-составляющая проходит в среде очень малый путь). Эту особенность зеркального О. с. используют в ряде поляризационных приборов. При j, больших угла Брюстера, коэффициент отражения от диэлектриков растет с увеличением j, стремясь в пределе к 1, независимо от поляризации падающего света. При зеркальном О. с., как явствует из формул Френеля, фаза отражённого света в общем случае скачкообразно изменяется. Если j = 0 (свет падает нормально к границе раздела), то при n2> n1 фаза отражённой волны сдвигается на p, при n2 < n1 ≈ остаётся неизменной. Сдвиг фазы при О. с. в случае j ¹ 0 может быть различен для р- и s-составляющих падающего света в зависимости от того, больше или меньше j угла Брюстера, а также от соотношения n2и n1. О. с. от поверхности оптически менее плотной среды (n2< n1) при sin j ³ n2 / n1 является полным внутренним отражением, при котором вся энергия падающего пучка лучей возвращается в 1-ю среду. Зеркальное О. с. от поверхностей сильно отражающих сред (например, металлов) описывается формулами, подобными формулам Френеля, с тем (правда, весьма существенным) изменением, что n2становится комплексной величиной, мнимая часть которой характеризует поглощение падающего света. Поглощение в отражающей среде приводит к отсутствию угла Брюстера и более высоким (в сравнении с диэлектриками) значениям коэффициента отражения ≈ даже при нормальном падении он может превышать 90% (именно этим объясняется широкое применение гладких металлических и металлизированных поверхностей в зеркалах).

    Отличаются и поляризационные характеристики отражённых от поглощающей среды световых волн (вследствие иных сдвигов фаз р- и s-составляющих падающих волн). Характер поляризации отражённого света настолько чувствителен к параметрам отражающей среды, что на этом явлении основаны многочисленные оптические методы исследования металлов (см. Магнитооптика, Металлооптика).

    Диффузное О. с. ≈ его рассеивание неровной поверхностью 2-й среды по всем возможным направлениям. Пространственное распределение отражённого потока излучения и его интенсивность различны в разных конкретных случаях и определяются соотношением между l и размерами неровностей, распределением неровностей по поверхности, условиями освещения, свойствами отражающей среды. Предельный, строго не выполняющийся в природе случай пространственного распределения диффузно отражённого света описывается Ламберта законом. Диффузное О. с. наблюдается также от сред, внутренняя структура которых неоднородна, что приводит к рассеянию света в объёме среды и возвращению части его в 1-ю среду. Закономерности диффузного О. с. от таких сред определяются характером процессов однократного и многократного рассеяния света в них. И поглощение, и рассеяние света могут обнаруживать сильную зависимость от l. Результатом этого является изменение спектрального состава диффузно отражённого света, что (при освещении белым светом) визуально воспринимается как окраска тел.

    Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т.

    ; Борн М., Вольф Э., Основы оптики, пер. с англ.,2 изд., М., 1973; Дитчбёрн Р., Физическая оптика, пер. с англ., М., 1965; Миннарт М., Свет и цвет в природе, пер. с англ., М., 1958; Бреховских Л. М., Волны в слоистых средах, М., 1957; Толанский С., Удивительные свойства света, пер. с англ., М., 1969.

    Законы отражения и преломления света. Полное внутреннее отражение света

    Законы отражения света были найдены экспериментально ещё в 3 веке до нашей эры древнегреческим учёным Евклидом. Также эти законы могут быть получены как следствие принципа Гюйгенса, согласно которому каждая точка среды, до которой дошло возмущение, является источником вторичных волн. Волновая поверхность (фронт волны) в следующий момент представляет собой касательную поверхность ко всем вторичным волнам. Принцип Гюйгенса является чисто геометрическим.

    На гладкую отражательную поверхность КМ (рис. 1.) падает плоская волна, то есть волна, волновые поверхности которой представляют собой полоски.

    Рис. 1 Построение Гюйгенса.

    А 1 А и В 1 В – лучи падающей волны, АС – волновая поверхность этой волны (или фронт волны).

    Пока фронт волны из точки С переместится за время t в точку В, из точки А распространится вторичная волна по полусфере на расстояние AD = CB, так как AD = vt и CB = vt, где v – скорость распространения волны.

    Волновая поверхность отражённой волны – это прямая BD, касательная к полусферам. Дальше волновая поверхность будет двигаться параллельно самой себе по направлению отражённых лучей АА 2 и ВВ 2 .

    Прямоугольные треугольники ΔАСВ и ΔADB имеют общую гипотенузу АВ и равные катеты AD = CB. Следовательно, они равны.

    Углы САВ = α и DBA = γ равны, потому что это углы со взаимно перпендикулярными сторонами. А из равенства треугольников следует, что α = γ.

    Из построения Гюйгенса также следует, что падающий и отражённый лучи лежат в одной плоскости с перпендикуляром к поверхности, восстановленным в точке падения луча.

    Законы отражения справедливы при обратном направлении хода световых лучей. Вследствие обратимости хода световых лучей имеем, что луч, распространяющийся по пути отражённого, отражается по пути падающего.

    Большинство тел лишь отражают падающее на них излучение, не являясь при этом источником света. Освещённые предметы видны со всех сторон, так как от их поверхности свет отражается в разных направлениях, рассеиваясь.

    Это явление называется диффузное отражение или рассеянное отражение . Диффузное отражение света (рис. 2.) происходит от всех шероховатых поверхностей. Для определения хода отражённого луча такой поверхности в точке падения луча проводится плоскость, касательная к поверхности, и по отношению к этой плоскости строятся углы падения и отражения.



    Рис. 2. Диффузное отражение света.

    Например, 85% белого света отражается от поверхности снега, 75% - от белой бумаги, 0,5% - от чёрного бархата. Диффузное отражение света не вызывает неприятных ощущений в глазу человека, в отличие от зеркального.

    Зеркальное отражение света – это когда падающие на гладкую поверхность под определённым углом лучи света отражаются преимущественно в одном направлении (рис. 3.). Отражающая поверхность в этом случае называется зеркалом (или зеркальная поверхность ). Зеркальные поверхности можно считать оптически гладкими, если размеры неровностей и неоднородностей на них не превышают длины световой волны (меньше 1 мкм). Для таких поверхностей выполняется закон отражения света.

    Рис. 3. Зеркальное отражение света.

    Плоское зеркало – это зеркало, отражающая поверхность которого представляет собой плоскость. Плоское зеркало даёт возможность видеть предметы, находящиеся перед ним, причём эти предметы кажутся расположенными за зеркальной плоскостью. В геометрической оптике каждая точка источника света S считается центром расходящегося пучка лучей (рис. 4.). Такой пучок лучей называется гомоцентрическим . Изображением точки S в оптическом устройстве называется центр S’ гомоцентрического отражённого и преломлённого пучка лучей в различных средах. Если свет, рассеянный поверхностями различных тел, попадает на плоское зеркало, а затем, отражаясь от него, падает в глаз наблюдателя, то в зеркале видны изображения этих тел.

    Рис. 4. Изображение, возникающее с помощью плоского зеркала.

    Изображение S’ называется действительным, если в точке S 1 пересекаются сами отражённые (преломлённые) лучи пучка. Изображение S 1 называется мнимым, если в ней пересекаются не сами отражённые (преломлённые) лучи, а их продолжения. Световая энергия в эту точку не поступает. На рис. 4 представлено изображение светящейся точки S, возникающее с помощью плоского зеркала.

    Луч SO падает на зеркало КМ под углом 0°, следовательно, угол отражения равен 0°, и данный луч после отражения идёт по пути OS. Из всего множества попадающих из точки S лучей на плоское зеркало выделим луч SO 1 .

    Луч SO 1 падает на зеркало под углом α и отражается под углом γ (α = γ). Если продолжить отражённые лучи за зеркало, то они сойдутся в точке S 1 , которая является мнимым изображением точки S в плоском зеркале. Таким образом, человеку кажется, что лучи выходят из точки S 1 , хотя на самом деле лучей, выходящих их этой точки и попадающих в глаз, не существует. Изображение точки S 1 расположено симметрично самой светящейся точке S относительно зеркала КМ. Докажем это.

    Луч SB, падающий на зеркало под углом 2 (рис. 5.), согласно закону отражения света отражается под углом 1 = 2.

    Рис. 5. Отражение от плоского зеркала.

    Из рис. 1.8 видно, что углы 1 и 5 равны – как вертикальные. Суммы углов 2 + 3 = 5 + 4 = 90°. Следовательно, углы 3 = 4 и 2 = 5.

    Прямоугольные треугольники ΔSOB и ΔS 1 OB имеют общий катет ОВ и равные острые углы 3 и 4, следовательно, эти треугольники равны по стороне и двум прилежащим к катету углам. Это означает, что SO = OS 1 , то есть точка S 1 расположена симметрично точке S относительно зеркала.

    Для того чтобы найти изображение предмета АВ в плоском зеркале, достаточно опустить перпендикуляры из крайних точек предмета на зеркало и, продолжив их за пределы зеркала, отложить за ним расстояние, равное расстоянию от зеркала до крайней точки предмета (рис. 6.). Это изображение будет мнимым и в натуральную величину. Размеры и взаимное расположение предметов сохраняются, но при этом в зеркале левая и правая стороны у изображения меняются местами по сравнению с самим предметом. Параллельность падающих на плоское зеркало световых лучей после отражения также не нарушается.

    Рис. 6. Изображение предмета в плоском зеркале.

    В технике часто применяют зеркала со сложной кривой отражающей поверхностью, например, сферические зеркала. Сферическое зеркало – это поверхность тела, имеющая форму сферического сегмента и зеркально отражающая свет. Параллельность лучей при отражении от таких поверхностей нарушается. Зеркало называют вогнутым , если лучи отражаются от внутренней поверхности сферического сегмента.

    Параллельные световые лучи после отражения от такой поверхности собираются в одну точку, поэтому вогнутое зеркало называют собирающим . Если лучи отражаются от наружной поверхности зеркала, то оно будет выпуклым . Параллельные световые лучи рассеиваются в разные стороны, поэтому выпуклое зеркало называют рассеивающим .

    Преломление На границе раздела двух сред падающий световой поток делится на две части: одна часть отражается, другая – преломляется.
    В. Снелл (Снеллиус) до X. Гюйгенса и И. Ньютона в 1621 г. экспериментально открыл закон преломления света, однако не получил формулу, а выразил его в виде таблиц, т.к. к этому времени в математике еще не были известны функции sin и cos.
    Преломление света подчиняется закону: 1. Луч падающий и луч преломленный лежат в одной плоскости с перпендикуляром, восставленным в точке падения луча к поверхности раздела двух сред. 2. Отношение синуса угла падения к синусу угла преломле­ния для двух данных сред есть величина постоянная (для моно­хроматического света).
    Причиной преломления является различие скоростей распространения волн в различных средах.
    Величина, равная отношению скорости света в вакууме к скорости света в данной среде, называется абсолютным показателем преломления среды. Это табличная величина – характеристика данной среды.
    Величина, равная отношению скорости света в одной среде к скорости света в другой, называется относительным показателем преломления второй среды относительно первой.
    Доказательство закона преломления. Распространение падающих и преломленных лучей: ММ" - граница раздела двух сред. Лучи А 1 А и В 1 В - падающие лучи; α - угол падения;. АС – волновая поверхность в момент, когда луч А 1 А достигнет границы раздела сред. Воспользовавшись принципом Гюйгенса построим волновую поверхность в тот момент, когда луч В 1 Вдостигнет границы раздела сред. Построим преломленные лучи АА 2 и ВВ 2 . β - угол преломления. АВ – общая сторона треугольников АВС и АВD. Т.к. лучи и волновые поверхности взаимно перпендикулярны, то угол ABD= α и угол BAC=β. Тогда получим:
    В призме или плоскопараллельной пластине преломление происходит на каждой грани в соответствие с законом преломления света. Не забудьте, что всегда существует отражение. Кроме того, реальный ход лучей зависит и от показателя преломления, и от преломляющего угла – угла при вершине призмы.)
    Полное отражение Если свет падает из оптически более плотной среды в оптически менее плотную, то при определенном для каждой среды угле падения, преломленный луч исчезает. Наблюдается только преломление. Это явление называется полным внутренним отражением.
    Угол падения, которому соответствует угол преломления 90°, называют предельным углом полного внутреннего отражения (a 0). Из закона преломления следует, что при переходе света из какой-либо среды в вакуум (или воздух)
    Если мы пытаемся из-под воды взглянуть на то, что находится в воздухе, то при определенном значении угла, под которым мы смотрим, можно увидеть отраженное от поверхности воды дно. Это важно учитывать для того, чтобы не потерять ориентировку.
    В ювелирном деле огранка камней подбирается так, чтобы на каждой грани наблюдалось полное отражение. Этим и объясняется "игра камней".
    Полным внутренним отражением объясняется и явление миража.