Решение простых линейных уравнений. Решение квадратных уравнений


Разберем два вида решения систем уравнения:

1. Решение системы методом подстановки.
2. Решение системы методом почленного сложения (вычитания) уравнений системы.

Для того чтобы решить систему уравнений методом подстановки нужно следовать простому алгоритму:
1. Выражаем. Из любого уравнения выражаем одну переменную.
2. Подставляем. Подставляем в другое уравнение вместо выраженной переменной, полученное значение.
3. Решаем полученное уравнение с одной переменной. Находим решение системы.

Чтобы решить систему методом почленного сложения (вычитания) нужно:
1.Выбрать переменную у которой будем делать одинаковые коэффициенты.
2.Складываем или вычитаем уравнения, в итоге получаем уравнение с одной переменной.
3. Решаем полученное линейное уравнение . Находим решение системы.

Решением системы являются точки пересечения графиков функции.

Рассмотрим подробно на примерах решение систем.

Пример №1:

Решим методом подстановки

Решение системы уравнений методом подстановки

2x+5y=1 (1 уравнение)
x-10y=3 (2 уравнение)

1. Выражаем
Видно что во втором уравнении имеется переменная x с коэффициентом 1,отсюда получается что легче всего выразить переменную x из второго уравнения.
x=3+10y

2.После того как выразили подставляем в первое уравнение 3+10y вместо переменной x.
2(3+10y)+5y=1

3.Решаем полученное уравнение с одной переменной.
2(3+10y)+5y=1 (раскрываем скобки)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2

Решением системы уравнения является точки пересечений графиков, следовательно нам нужно найти x и у, потому что точка пересечения состоит их x и y.Найдем x, в первом пункте где мы выражали туда подставляем y.
x=3+10y
x=3+10*(-0,2)=1

Точки принято записывать на первом месте пишем переменную x, а на втором переменную y.
Ответ: (1; -0,2)

Пример №2:

Решим методом почленного сложения (вычитания).

Решение системы уравнений методом сложения

3x-2y=1 (1 уравнение)
2x-3y=-10 (2 уравнение)

1.Выбираем переменную, допустим, выбираем x. В первом уравнении у переменной x коэффициент 3, во втором 2. Нужно сделать коэффициенты одинаковыми, для этого мы имеем право домножить уравнения или поделить на любое число. Первое уравнение домножаем на 2, а второе на 3 и получим общий коэффициент 6.

3x-2y=1 |*2
6x-4y=2

2x-3y=-10 |*3
6x-9y=-30

2.Из первого уравнения вычтем второе, чтобы избавиться от переменной x.Решаем линейное уравнение.
__6x-4y=2

5y=32 | :5
y=6,4

3.Находим x. Подставляем в любое из уравнений найденный y, допустим в первое уравнение.
3x-2y=1
3x-2*6,4=1
3x-12,8=1
3x=1+12,8
3x=13,8 |:3
x=4,6

Точкой пересечения будет x=4,6; y=6,4
Ответ: (4,6; 6,4)

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно . Без шуток.

Приложение

Решение любого типа уравнений онлайн на сайт для закрепления изученного материала студентами и школьниками.. Решение уравнений онлайн. Уравнения онлайн. Различают алгебраические, параметрические, трансцендентные, функциональные, дифференциальные и другие виды уравнений.. Некоторые классы уравнений имеют аналитические решения, которые удобны тем, что не только дают точное значение корня, а позволяют записать решение в виде формулы, в которую могут входить параметры. Аналитические выражения позволяют не только вычислить корни, а провести анализ их существования и их количества в зависимости от значений параметров, что часто бывает даже важнее для практического применения, чем конкретные значения корней. Решение уравнений онлайн.. Уравнения онлайн. Решение уравнения - задача по нахождению таких значений аргументов, при которых это равенство достигается. На возможные значения аргументов могут быть наложены дополнительные условия (целочисленности, вещественности и т. д.). Решение уравнений онлайн.. Уравнения онлайн. Вы сможете решить уравнение онлайн моментально и с высокой точностью результата. Аргументы заданных функций (иногда называются «переменными») в случае уравнения называются «неизвестными». Значения неизвестных, при которых это равенство достигается, называются решениями или корнями данного уравнения. Про корни говорят, что они удовлетворяют данному уравнению. Решить уравнение онлайн означает найти множество всех его решений (корней) или доказать, что корней нет. Решение уравнений онлайн.. Уравнения онлайн. Равносильными или эквивалентными называются уравнения, множества корней которых совпадают. Равносильными также считаются уравнения, которые не имеют корней. Эквивалентность уравнений имеет свойство симметричности: если одно уравнение эквивалентно другому, то второе уравнение эквивалентно первому. Эквивалентность уравнений имеет свойство транзитивности: если одно уравнение эквивалентно другому, а второе эквивалентно третьему, то первое уравнение эквивалентно третьему. Свойство эквивалентности уравнений позволяет проводить с ними преобразования, на которых основываются методы их решения. Решение уравнений онлайн.. Уравнения онлайн. Сайт позволит решить уравнение онлайн. К уравнениям, для которых известны аналитические решения, относятся алгебраические уравнения, не выше четвёртой степени: линейное уравнение, квадратное уравнение, кубическое уравнение и уравнение четвёртой степени. Алгебраические уравнения высших степеней в общем случае аналитического решения не имеют, хотя некоторые из них можно свести к уравнениям низших степеней. Уравнения, в которые входят трансцендентные функции называются трансцендентными. Среди них аналитические решения известны для некоторых тригонометрических уравнений, поскольку нули тригонометрических функций хорошо известны. В общем случае, когда аналитического решения найти не удаётся, применяют численные методы. Численные методы не дают точного решения, а только позволяют сузить интервал, в котором лежит корень, до определённого заранее заданного значения. Решение уравнений онлайн.. Уравнения онлайн.. Вместо уравнения онлайн мы представим, как то же самое выражение образует линейную зависимость и не только по прямой касательной, но и в самой точке перегиба графика. Этот метод незаменим во все времена изучения предмета. Часто бывает, что решение уравнений приближается к итоговому значению посредством бесконечных чисел и записи векторов. Проверить начальные данные необходимо и в этом суть задания. Иначе локальное условие преобразуется в формулу. Инверсия по прямой от заданной функции, которую вычислит калькулятор уравнений без особой задержки в исполнении, взаимозачету послужит привилегия пространства. Речь пойдет о студентах успеваемости в научной среде. Впрочем, как и все вышесказанное, нам поможет в процессе нахождения и когда вы решите уравнение полностью, то полученный ответ сохраните на концах отрезка прямой. Линии в пространстве пересекаются в точке и эта точка называется пересекаемой линиями. Обозначен интервал на прямой как задано ранее. Высший пост на изучение математики будет опубликован. Назначить значению аргумента от параметрически заданной поверхности и решить уравнение онлайн сможет обозначить принципы продуктивного обращения к функции. Лента Мебиуса, или как её называет бесконечностью, выглядит в форме восьмерки. Это односторонняя поверхность, а не двухсторонняя. По принципу общеизвестному всем мы объективно примем линейные уравнения за базовое обозначение как есть и в области исследования. Лишь два значения последовательно заданных аргументов способны выявить направление вектора. Предположить, что иное решение уравнений онлайн гораздо более, чем просто его решение, обозначает получение на выходе полноценного варианта инварианта. Без комплексного подхода студентам сложно обучиться данному материалу. По-прежнему для каждого особого случая наш удобный и умный калькулятор уравнений онлайн поможет всем в непростую минуту, ведь достаточно лишь указать вводные параметры и система сама рассчитает ответ. Перед тем, как начать вводить данные, нам понадобится инструмент ввода, что можно сделать без особых затруднений. Номер каждой ответной оценки будет квадратное уравнение приводить к нашим выводам, но этого сделать не так просто, потому что легко доказать обратное. Теория, в силу своих особенностей, не подкреплена практическими знаниями. Увидеть калькулятор дробей на стадии опубликования ответа, задача в математике не из легких, поскольку альтернатива записи числа на множестве способствует увеличению роста функции. Впрочем, не сказать про обучение студентов было бы некорректным, поэтому выскажем каждый столько, сколько этого необходимо сделать. Раньше найденное кубическое уравнение по праву будет принадлежать области определения, и содержать в себе пространство числовых значений, а также символьных переменных. Выучив или зазубрив теорему, наши студенты проявят себя только с лучшей стороны, и мы за них будем рады. В отличие от множества пересечений полей, наши уравнения онлайн описываются плоскостью движения по перемножению двух и трех числовых объединенных линий. Множество в математике определяется не однозначно. Лучшее, по мнению студентов, решение - это доведенная до конца запись выражения. Как было сказано научным языком, не входит абстракция символьных выражений в положение вещей, но решение уравнений дает однозначный результат во всех известных случаях. Продолжительность занятия преподавателя складывается из потребностей в этом предложении. Анализ показал как необходимость всех вычислительных приемов во многих сферах, и абсолютно ясно, что калькулятор уравнений незаменимый инструментарий в одаренных руках студента. Лояльный подход к изучению математики обуславливает важность взглядов разных направленностей. Хотите обозначить одну из ключевых теорем и решите уравнение так, в зависимости от ответа которого будет стоять дальнейшая потребность в его применении. Аналитика в данной области набирает все мощный оборот. Начнем с начала и выведем формулу. Пробив уровень возрастания функции, линия по касательной в точке перегиба обязательно приведет к тому, что решить уравнение онлайн будет одним из главных аспектов в построении того самого графика от аргумента функции. Любительский подход имеет право быть применен, если данное условие не противоречит выводам студентов. На задний план выводится именно та подзадача, которая ставит анализ математических условий как линейные уравнения в существующей области определения объекта. Взаимозачет по направлению ортогональности взаимоуменьшает преимущество одинокого абсолютного значения. По модулю решение уравнений онлайн дает столько же решений, если раскрыть скобки сначала со знаком плюс, а затем со знаком минус. В таком случае решений найдется в два раза больше, и результат будет точнее. Стабильный и правильный калькулятор уравнений онлайн есть успех в достижении намеченной цели в поставленной преподавателем задаче. Нужный метод выбрать представляется возможным благодаря существенным отличиям взглядов великих ученых. Полученное квадратное уравнение описывает кривую линий так называемую параболу, а знак определит ее выпуклость в квадратной системе координат. Из уравнения получим и дискриминант, и сами корни по теореме Виета. Представить выражение в виде правильной или неправильной дроби и применить калькулятор дробей необходимо на первом этапе. В зависимости от этого будет складываться план дальнейших наших вычислений. Математика при теоретическом подходе пригодится на каждом этапе. Результат обязательно представим как кубическое уравнение, потому что его корни скроем именно в этом выражении, для того, чтобы упростить задачу учащемуся в ВУЗе. Любые методы хороши, если они пригодны к поверхностному анализу. Лишние арифметические действия не приведут к погрешности вычислений. С заданной точностью определит ответ. Используя решение уравнений, скажем прямо - найти независимую переменную от заданной функции не так-то просто, особенно в период изучения параллельных линий на бесконечности. В виду исключения необходимость очень очевидна. Разность полярностей однозначна. Из опыта преподавания в институтах наш преподаватель вынес главный урок, на котором были изучены уравнения онлайн в полном математическом смысле. Здесь речь шла о высших усилиях и особых навыках применения теории. В пользу наших выводов не стоит глядеть сквозь призму. До позднего времени считалось, что замкнутое множество стремительно возрастает по области как есть и решение уравнений просто необходимо исследовать. На первом этапе мы не рассмотрели все возможные варианты, но такой подход обоснован как никогда. Лишние действия со скобками оправдывают некоторые продвижения по осям ординат и абсцисс, чего нельзя не заметить невооруженным глазом. В смысле обширного пропорционального возрастания функции есть точка перегиба. В лишний раз докажем как необходимое условие будет применяться на всем промежутке убывания той или иной нисходящей позиции вектора. В условиях замкнутого пространства мы выберем переменную из начального блока нашего скрипта. За отсутствие главного момента силы отвечает система, построенная как базис по трем векторам. Однако калькулятор уравнений вывел, и помогло в нахождении всех членов построенного уравнения, как над поверхностью, так и вдоль параллельных линий. Вокруг начальной точки опишем некую окружность. Таким образом, мы начнем продвигаться вверх по линиям сечений, и касательная опишет окружность по всей ее длине, в результате получим кривую, которая называется эвольвентой. Кстати расскажем об этой кривой немного истории. Дело в том, что исторически в математике не было понятия самой математики в чистом понимании как сегодня. Раньше все ученые занимались одним общим делом, то есть наукой. Позже через несколько столетий, когда научный мир наполнился колоссальным объемом информации, человечество все-таки выделило множество дисциплин. Они до сих пор остались неизменными. И все же каждый год ученые всего мира пытаются доказать, что наука безгранична, и вы не решите уравнение, если не будете обладать знаниями в области естественных наук. Окончательно поставить точку не может быть возможным. Об этом размышлять также бессмысленно, как согревать воздух на улице. Найдем интервал, на котором аргумент при положительном своем значении определит модуль значения в резко возрастающем направлении. Реакция поможет отыскать как минимум три решения, но необходимо будет проверить их. Начнем с того, что нам понадобиться решить уравнение онлайн с помощью уникального сервиса нашего сайта. Введем обе части заданного уравнения, нажмем на кнопу «РЕШИТЬ» и получим в течение всего нескольких секунд точный ответ. В особых случаях возьмем книгу по математике и перепроверим наш ответ, а именно посмотрим только ответ и станет все ясно. Вылетит одинаковый проект по искусственному избыточному параллелепипеду. Есть параллелограмм со своими параллельными сторонами, и он объясняет множество принципов и подходов к изучению пространственного отношения восходящего процесса накопления полого пространства в формулах натурального вида. Неоднозначные линейные уравнения показывают зависимость искомой переменной с нашим общим на данный момент времени решением и надо как-то вывести и привести неправильную дробь к нетривиальному случаю. На прямой отметим десять точек и проведем через каждую точку кривую в заданном направлении, и выпуклостью вверх. Без особых трудностей наш калькулятор уравнений представит в таком виде выражение, что его проверка на валидность правил будет очевидна даже в начале записи. Система особых представлений устойчивости для математиков на первом месте, если иного не предусмотрено формулой. На это мы ответим подробным представление доклада на тему изоморфного состояния пластичной системы тел и решение уравнений онлайн опишет движение каждой материальной точки в этой системе. На уровне углубленного исследования понадобится подробно выяснить вопрос об инверсиях как минимум нижнего слоя пространства. По возрастанию на участке разрыва функции мы применим общий метод великолепного исследователя, кстати, нашего земляка, и расскажем ниже о поведении плоскости. В силу сильных характеристик аналитически заданной функции, мы используем только калькулятор уравнений онлайн по назначению в выведенных пределах полномочий. Рассуждая далее, остановим свой обзор на однородности самого уравнения, то есть правая его часть приравнена к нулю. Лишний раз удостоверимся в правильности принятого нами решения по математике. Во избежание получения тривиального решения, внесем некоторые корректировки в начальные условия по задаче на условную устойчивость системы. Составим квадратное уравнение, для которого выпишем по известной всем формуле две записи и найдем отрицательные корни. Если один корень на пять единиц превосходит второй и третий корни, то внесением правок в главный аргумент мы тем самым искажаем начальные условия подзадачи. По своей сути нечто необычное в математике можно всегда описать с точностью до сотых значений положительного числа. В несколько раз калькулятор дробей превосходит свои аналоги на подобных ресурсах в самый лучший момент нагрузки сервера. По поверхности растущего по оси ординат вектора скорости начертим семь линий, изогнутых в противоположные друг другу направления. Соизмеримость назначенного аргумента функции опережает показания счетчика восстановительного баланса. В математике этот феномен представим через кубическое уравнение с мнимыми коэффициентами, а также в биполярном прогрессе убывания линий. Критические точки перепада температуры во много своем значении и продвижении описывают процесс разложения сложной дробной функции на множители. Если вам скажут решите уравнение, не спешите это делать сию минуту, однозначно сначала оцените весь план действий, а уже потом принимайте правильный подход. Польза будет непременно. Легкость в работе очевидна, и в математике то же самое. Решить уравнение онлайн. Все уравнения онлайн представляют собой определенного вида запись из чисел или параметров и переменной, которую нужно определить. Вычислить эту самую переменную, то есть найти конкретные значения или интервалы множества значений, при которых будет выполняться тождество. Напрямую зависят условия начальные и конечные. В общее решение уравнений как правило входят некоторые переменные и константы, задавая которые, мы получим целые семейства решений для данной постановки задачи. В целом это оправдывает вкладываемые усилия по направлению возрастания функциональности пространственного куба со стороной равной 100 сантиметрам. Применить теорему или лемму можно на любом этапе построения ответа. Сайт постепенно выдает калькулятор уравнений при необходимости на любом интервале суммирования произведений показать наименьшее значение. В половине случаев такой шар как полый, не в большей степени отвечает требованиям постановки промежуточного ответа. По крайней мере на оси ординат в направлении убывания векторного представления эта пропорция несомненно будет являться оптимальнее предыдущего выражения. В час, когда по линейным функциям будет проведен полный точечный анализ, мы, по сути, соберем воедино все наши комплексные числа и биполярные пространства плоскостной. Подставив в полученное выражение переменную, вы решите уравнение поэтапно и с высокой точностью дадите максимально развернутый ответ. Лишний раз проверить свои действия в математике будет хорошим тоном со стороны учащегося студента. Пропорция в соотношении дробей зафиксировала целостность результата по всем важным направлениям деятельности нулевого вектора. Тривиальность подтверждается в конце выполненных действий. С простой поставленной задачей у студентов не может возникнуть сложностей, если решить уравнение онлайн в самые кратчайшие периоды времени, но не забываем о всевозможных правилах. Множество подмножеств пересекается в области сходящихся обозначений. В разных случаях произведение не ошибочно распадается на множители. Решить уравнение онлайн вам помогут в нашем первом разделе, посвященном основам математических приемов для значимых разделов для учащихся в ВУЗах и техникумах студентов. Ответные примеры нас не заставят ожидать несколько дней, так как процесс наилучшего взаимодействия векторного анализа с последовательным нахождением решений был запатентован в начале прошлого века. Выходит так, что усилия по взаимосвязям с окружающим коллективом были не напрасными, другое очевидно назрело в первую очередь. Спустя несколько поколений, ученые всего мира заставили поверить в то, что математика это царица наук. Будь-то левый ответ или правый, все равно исчерпывающие слагаемые необходимо записать в три ряда, поскольку в нашем случае речь пойдет однозначно только про векторный анализ свойств матрицы. Нелинейные и линейные уравнения, наряду с биквадратными уравнениями, заняли особый пост в нашей книге про наилучшие методы расчета траектории движения в пространстве всех материальных точек замкнутой системы. Воплотить идею в жизнь нам поможет линейный анализ скалярного произведения трех последовательных векторов. В конце каждой постановки, задача облегчается благодаря внедрениям оптимизированных числовых исключений в разрез выполняемых наложений числовых пространств. Иное суждение не противопоставит найденный ответ в произвольной форме треугольника в окружности. Угол между двумя векторами заключает в себе необходимый процент запаса и решение уравнений онлайн зачастую выявляет некий общий корень уравнения в противовес начальным условиям. Исключение выполняет роль катализатора во всем неизбежном процессе нахождения положительного решения в области определения функции. Если не сказано, что нельзя пользоваться компьютером, то калькулятор уравнений онлайн в самый раз подойдет для ваших трудных задач. Достаточно лишь вписать в правильном формате свои условные данные и наш сервер выдаст в самые кратчайшие сроки полноценный результирующий ответ. Показательная функция возрастает гораздо быстрее, чем линейная. Об этом свидетельствую талмуды умной библиотечной литературы. Произведет вычисление в общем смысле как это бы сделало данное квадратное уравнение с тремя комплексными коэффициентами. Парабола в верхней части полуплоскости характеризует прямолинейное параллельное движение вдоль осей точки. Здесь стоит упомянуть о разности потенциалов в рабочем пространстве тела. Взамен неоптимальному результату, наш калькулятор дробей по праву занимает первую позицию в математическом рейтинге обзора функциональных программ на серверной части. Легкость использования данного сервиса оценят миллионы пользователей сети интернет. Если не знаете, как им воспользоваться, то мы с радостью вам поможем. Еще хотим особо отметить и выделить кубическое уравнение из целого ряда первостепенных школьнических задач, когда необходимо быстро найти его корни и построить график функции на плоскости. Высшие степени воспроизведения - это одна из сложных математических задач в институте и на ее изучение выделяется достаточное количество часов. Как и все линейные уравнения, наши не исключение по многих объективным правилам, взгляните под разными точками зрений, и окажется просто и достаточно выставить начальные условия. Промежуток возрастания совпадает с интервалом выпуклости функции. Решение уравнений онлайн. В основе изучения теории состоят уравнения онлайн из многочисленных разделов по изучению основной дисциплины. По случаю такого подхода в неопределенных задачах, очень просто представить решение уравнений в заданном заранее виде и не только сделать выводы, но и предсказать исход такого положительного решения. Выучить предметную область поможет нам сервис в самых лучших традициях математики, именно так как это принято на Востоке. В лучшие моменты временного интервала похожие задачи множились на общий множитель в десять раз. Изобилием умножений кратных переменных в калькулятор уравнений завелось приумножать качеством, а не количественными переменными таких значений как масса или вес тела. Во избежание случаев дисбаланса материальной системы, нам вполне очевиден вывод трехмерного преобразователя на тривиальном схождении невырожденных математических матриц. Выполните задание и решите уравнение в заданных координатах, поскольку вывод заранее неизвестен, как и неизвестны все переменные, входящие в пост пространственное время. На короткий срок выдвинете общий множитель за рамки круглых скобок и поделите на наибольший общий делитель обе части заранее. Из-под получившегося накрытого подмножества чисел извлечь подробным способом подряд тридцать три точки за короткий период. Постольку поскольку в наилучшем виде решить уравнение онлайн возможно каждому студенту, забегая вперед, скажем одну важную, но ключевую вещь, без которой в дальнейшем будем непросто жить. В прошлом веке великий ученый подметил ряд закономерностей в теории математики. На практике получилось не совсем ожидаемое впечатление от событий. Однако в принципе дел это самое решение уравнений онлайн способствует улучшению понимания и восприятия целостного подхода к изучению и практическому закреплению пройдённого теоретического материала у студентов. На много проще это сделать в свое учебное время.

=

Уравнение - это равенство, содержащее букву, значение которой надо найти.

В уравнениях неизвестное обычно обозначается строчной латинской буквой. Чаще всего используют буквы « x » [икс] и « y » [игрек].

  • Корень уравнения - это значение буквы, при котором из уравнения получается верное числовое равенство.
  • Решить уравнение - значит найти все его корни или убедиться, что корней нет.
  • Решив уравнение, всегда после ответа записываем проверку.

    Информация для родителей

    Уважаемые родители, обращаем ваше внимание на то, что в начальной школе и в 5 классе дети НЕ знают тему «Отрицательные числа».

    Поэтому они должны решать уравнения, используя только свойства сложения, вычитания, умножения и деления. Методы решения уравнений для 5 класса приведены ниже.

    Не пытайтесь объяснить решение уравнений через перенос чисел и букв из одной части уравнения в другую с изменением знака.

    Освежить знания по понятиям, связанным со сложением, вычитанием, умножением и делением вы можете в уроке «Законы арифметики».

    Решение уравнений на сложение и вычитание

    Как найти неизвестное
    слагаемое

    Как найти неизвестное
    уменьшаемое

    Как найти неизвестное
    вычитаемое

    Чтобы найти неизвестное слагаемое, надо от суммы отнять известное слагаемое.

    Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.

    Чтобы найти неизвестное вычитаемое, надо от уменьшаемого отнять разность.

    x + 9 = 15
    x = 15 − 9
    x = 6
    Проверка

    x − 14 = 2
    x = 14 + 2
    x = 16
    Проверка

    16 − 2 = 14
    14 = 14

    5 − x = 3
    x = 5 − 3
    x = 2
    Проверка

    Решение уравнений на умножение и деление

    Как найти неизвестный
    множитель

    Как найти неизвестное
    делимое

    Как найти неизвестный
    делитель

    Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.

    Чтобы найти неизвестное делимое, надо частное умножить на делитель.

    Чтобы найти неизвестный делитель, надо делимое разделить на частное.

    y · 4 = 12
    y = 12: 4
    y = 3
    Проверка

    y: 7 = 2
    y = 2 · 7
    y = 14
    Проверка

    8: y = 4
    y = 8: 4
    y = 2
    Проверка

    Уравнение - это равенство, содержащее букву, знамение которой нужно найти. Решение уравнения - это тот набор значений букв, при котором уравнение превращается в верное равенство:

    Напомним, что для решения уравнении надо слагаемые с неизвестным перенести в одну часть равенства, а числовые слагаемые в другую, привести подобные и получить такое равенство:

    Из последнего равенства определим неизвестное по правилу: «один из множителей равен частному, деленному на второй множитель».

    Так как рациональные числа а и Ь могут иметь одинаковые и разные знаки, то знак неизвестного определяется по правилам деления рациональных чисел.

    Порядок решения линейных уравнений

    Линейное уравнение необходимо упростить, раскрыв скобки и выполнив действия второй ступени (умножение и деление).

    Перенести неизвестные в одну сторону от знака равенства, а числа - в другую сторону от знака равенства, получив тождественное заданному равенство,

    Привести подобные слева и справа от знака равенства, получив равенство вида ax = b .

    Вычислить корень уравнения (найти неизвестное х из равенства x = b : a ),

    Выполнить проверку, подставив неизвестное в заданное уравнение.

    Если получим тождество в числовом равенстве, то уравнение решено верно.

    Особые случаи решения уравнений

  1. Если уравнение задано произведением, равным 0, то для его решения используем свойство умножения: «произведение равно нулю, если один из сомножителей или оба сомножителя равны нулю».
  2. 27 (x - 3) = 0
    27 не равно 0, значит x - 3 = 0

    У второго примера два решения уравнения, так как
    это уравнение второй степени:

    Если коэффициенты уравнения являются обыкновенными дробями, то прежде всего надо избавиться от знаменателей. Для этого:

    Найти общий знаменатель;

    Определить дополнительные множители для каждого члена уравнения;

    Умножить числители дробей и целые числа на дополнительные множители и записать все члены уравнения без знаменателей (общий знаменатель можно отбросить);

    Перенести слагаемые с неизвестными в одну часть уравнения, а числовые слагаемые - в другую от знака равенства, получив равносильное равенство;

    Привести подобные члены;

    Основные свойства уравнений

    В любой части уравнения можно приводить подобные слагаемые или раскрывать скобку.

    Любой член уравнения можно переносить из одной части уравнения в другую, изменив его знак на противоположный.

    Обе части уравнения можно умножать (делить) на одно и то же число, кроме 0.

    В примере выше для решения уравнения были использованы все его свойства.

    Правило решений простых уравнений

    Внимание!
    К этой теме имеются дополнительные
    материалы в Особом разделе 555.
    Для тех, кто сильно «не очень. »
    И для тех, кто «очень даже. »)

    Линейные уравнения.

    Линейные уравнения — не самая сложная тема школьной математики. Но есть там свои фишки, которые могут озадачить даже подготовленного ученика. Разберёмся?)

    Обычно линейное уравнение определяется, как уравнение вида:

    Ничего сложного, правда? Особенно, если не замечать слова: «где а и b – любые числа» . А если заметить, да неосторожно задуматься?) Ведь, если а=0, b=0 (любые же числа можно?), то получается забавное выражение:

    Но и это ещё не всё! Если, скажем, а=0, а b=5, получается совсем уж что-то несусветное:

    Что напрягает и подрывает доверие к математике, да.) Особенно на экзаменах. А ведь из этих странных выражений ещё и икс найти надо! Которого нету вообще. И, что удивительно, этот икс очень просто находится. Мы научимся это делать. В этом уроке.

    Как узнать линейное уравнение по внешнему виду? Это, смотря какой внешний вид.) Фишка в том, что линейными уравнениями называются не только уравнения вида ax + b = 0 , но и любые уравнения, которые преобразованиями и упрощениями сводятся к этому виду. А кто ж его знает, сводится оно, или нет?)

    Чётко распознать линейное уравнение можно в некоторых случаях. Скажем, если перед нами уравнение, в которых есть только неизвестные в первой степени, да числа. Причём в уравнении нет дробей с делением на неизвестное , это важно! А деление на число, или дробь числовая – это пожалуйста! Например:

    Это линейное уравнение. Здесь есть дроби, но нет иксов в квадрате, в кубе и т.д., и нет иксов в знаменателях, т.е. нет деления на икс . А вот уравнение

    нельзя назвать линейным. Здесь иксы все в первой степени, но есть деление на выражение с иксом . После упрощений и преобразований может получиться и линейное уравнение, и квадратное, и всё, что угодно.

    Получается, что узнать линейное уравнение в каком-нибудь замудрёном примере нельзя, пока его почти не решишь. Это огорчает. Но в заданиях, как правило, не спрашивают о виде уравнения, правда? В заданиях велят уравнения решать. Это радует.)

    Решение линейных уравнений. Примеры.

    Всё решение линейных уравнений состоит из тождественных преобразований уравнений. Кстати, эти преобразования (целых два!) лежат в основе решений всех уравнений математики. Другими словами, решение любого уравнения начинается с этих самых преобразований. В случае линейных уравнений, оно (решение) на этих преобразованиях и заканчивается полноценным ответом. Имеет смысл по ссылке сходить, правда?) Тем более, там тоже примеры решения линейных уравнений имеются.

    Для начала рассмотрим самый простой пример. Безо всяких подводных камней. Пусть нам нужно решить вот такое уравнение.

    Это линейное уравнение. Иксы все в первой степени, деления на икс нету. Но, собственно, нам без разницы, какое это уравнение. Нам его решать надо. Схема тут простая. Собрать всё, что с иксами в левой части равенства, всё, что без иксов (числа) — в правой.

    Для этого нужно перенести 4х в левую часть, со сменой знака, разумеется, а 3 — в правую. Кстати, это и есть первое тождественное преобразование уравнений. Удивлены? Значит, по ссылке не ходили, а зря.) Получим:

    Приводим подобные, считаем:

    Что нам не хватает для полного счастья? Да чтобы слева чистый икс был! Пятёрка мешает. Избавляемся от пятёрки с помощью второго тождественного преобразования уравнений. А именно — делим обе части уравнения на 5. Получаем готовый ответ:

    Пример элементарный, разумеется. Это для разминки.) Не очень понятно, к чему я тут тождественные преобразования вспоминал? Ну ладно. Берём быка за рога.) Решим что-нибудь посолиднее.

    Например, вот это уравнение:

    С чего начнём? С иксами — влево, без иксов — вправо? Можно и так. Маленькими шажочками по длинной дороге. А можно сразу, универсальным и мощным способом. Если, конечно, в вашем арсенале имеются тождественные преобразования уравнений.

    Задаю вам ключевой вопрос: что вам больше всего не нравится в этом уравнении?

    95 человек из 100 ответят: дроби ! Ответ правильный. Вот и давайте от них избавимся. Поэтому начинаем сразу со второго тождественного преобразования . На что нужно умножить дробь слева, чтобы знаменатель сократился напрочь? Верно, на 3. А справа? На 4. Но математика позволяет нам умножать обе части на одно и то же число . Как выкрутимся? А умножим обе части на 12! Т.е. на общий знаменатель. Тогда и тройка сократится, и четвёрка. Не забываем, что умножать надо каждую часть целиком . Вот как выглядит первый шаг:

    Обратите внимание! Числитель (х+2) я взял в скобки! Это потому, что при умножении дробей, числитель умножается весь, целиком! А теперь дроби и сократить можно:

    Раскрываем оставшиеся скобки:

    Не пример, а сплошное удовольствие!) Вот теперь вспоминаем заклинание из младших классов: с иксом – влево, без икса – вправо! И применяем это преобразование:

    И делим обе части на 25, т.е. снова применяем второе преобразование:

    Вот и всё. Ответ: х =0,16

    Берём на заметку: чтобы привести исходное замороченное уравнение к приятному виду, мы использовали два (всего два!) тождественных преобразования – перенос влево-вправо со сменой знака и умножение-деление уравнения на одно и то же число. Это универсальный способ! Работать таким образом мы будем с любыми уравнениями! Совершенно любыми. Именно поэтому я про эти тождественные преобразования всё время занудно повторяю.)

    Как видим, принцип решения линейных уравнений простой. Берём уравнение и упрощаем его с помощью тождественных преобразований до получения ответа. Основные проблемы здесь в вычислениях, а не в принципе решения.

    Но. Встречаются в процессе решения самых элементарных линейных уравнений такие сюрпризы, что могут и в сильный ступор вогнать.) К счастью, таких сюрпризов может быть только два. Назовём их особыми случаями.

    Особые случаи при решении линейных уравнений.

    Сюрприз первый.

    Предположим, попалось вам элементарнейшее уравнение, что-нибудь, типа:

    Слегка скучая, переносим с иксом влево, без икса — вправо. Со сменой знака, всё чин-чинарём. Получаем:

    Считаем, и. опаньки. Получаем:

    Само по себе это равенство не вызывает возражений. Нуль действительно равен нулю. Но икс-то пропал! А мы обязаны записать в ответе, чему равен икс. Иначе, решение не считается, да.) Тупик?

    Спокойствие! В таких сомнительных случаях спасают самые общие правила. Как решать уравнения? Что значит решить уравнение? Это значит, найти все значения икса, которые, при подстановке в исходное уравнение, дадут нам верное равенство.

    Но верное равенство у нас уже получилось! 0=0, куда уж вернее?! Остаётся сообразить, при каких иксах это получается. Какие значения икса можно подставлять в исходное уравнение, если эти иксы всё равно посокращаются в полный ноль? Ну же?)

    Да. Иксы можно подставлять любые! Какие хотите. Хоть 5, хоть 0,05, хоть -220. Они всё равно сократятся. Если не верите — можете проверить.) Поподставляйте любые значения икса в исходное уравнение и посчитайте. Всё время будет получаться чистая правда: 0=0, 2=2, -7,1=-7,1 и так далее.

    Вот вам и ответ: х — любое число.

    Ответ можно записать разными математическими значками, суть не меняется. Это совершенно правильный и полноценный ответ.

    Сюрприз второй.

    Возьмём то же элементарнейшее линейное уравнение и изменим в нём всего одно число. Вот такое будем решать:

    После тех же самых тождественных преобразований мы получим нечто интригующее:

    Вот так. Решали линейное уравнение, получили странное равенство. Говоря математическим языком, мы получили неверное равенство. А говоря простым языком, неправда это. Бред. Но тем, не менее, этот бред — вполне веское основание для правильного решения уравнения.)

    Опять соображаем, исходя из общих правил. Какие иксы, при подстановке в исходное уравнение, дадут нам верное равенство? Да никакие! Нет таких иксов. Чего ни подставляй, всё посократится, останется бред.)

    Вот вам и ответ: решений нет.

    Это тоже вполне полноценный ответ. В математике такие ответы частенько встречаются.

    Вот так. Сейчас, надеюсь, пропажа иксов в процессе решения любого (не только линейного) уравнения вас нисколько не смутит. Дело уже знакомое.)

    Теперь, когда мы разобрались со всеми подводными камнями в линейных уравнениях, имеет смысл их порешать.

    А на ЕГЭ они будут? — слышу вопрос практичных людей. Отвечаю. В чистом виде — нет. Слишком элементарны. А вот в ГИА, или при решении задачек в ЕГЭ, вы с ними столкнётесь обязательно! Так что, меняем мышку на ручку и решаем.

    Ответы даны в беспорядке: 2,5; нет решений; 51; 17.

    Получилось?! Поздравляю! У вас хорошие шансы на экзаменах.)

    Не сходятся ответы? М-да. Это не радует. Эта не та тема, без которой можно обойтись. Рекомендую посетить Раздел 555. Там очень подробно расписано, что надо делать, и как это делать, чтобы не запутаться в решении. На примере этих уравнений.

    А как решать уравнения более хитрые, — это в следующей теме.

    Если Вам нравится этот сайт.

    Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

    Вот здесь можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

    А вот здесь можно познакомиться с функциями и производными.

    Решение линейных уравнений 7 класс

    Для решения линейных уравнений используют два основных правила (свойства).

    Свойство № 1
    или
    правило переноса

    При переносе из одной части уравнения в другую член уравнения меняет свой знак на противоположный.

    Давайте разберём правило переноса на примере. Пусть нам требуется решить линейное уравнение.

    Вспомним, что у любого уравнения есть левая и правая часть.

    Перенесем число « 3 » из левой части уравнения в правую.

    Так как в левой части уравнения у числа « 3 » был знак « + », значит в правую часть уравнения « 3 » перенесется со знаком « − ».

    Полученное числовое значение « x = 2 » называют корнем уравнения.

    Не забывайте после решения любого уравнения записывать ответ.

    Рассмотрим другое уравнение.

    По правилу переноса перенесем « 4x » из левой части уравнения в правую, поменяв знак на противоположный.

    Несмотря на то, что перед « 4x » не стоит никакого знака, мы понимаем, что перед « 4x » стоит знак « + ».

    Теперь приведем подобные и решим уравнение до конца.

    Свойство № 2
    или
    правило деления

    В любом уравнении можно разделить левую и правую часть на одно и то же число.

    Но нельзя делить на неизвестное!

    Разберемся на примере, как использовать правило деления при решении линейных уравнений.

    Число « 4 », которое стоит при « x », называют числовым коэффициентом при неизвестном.

    Между числовым коэффициентом и неизвестном всегда стоит действие умножение.

    Чтобы решить уравнение необходимо сделать так, чтобы при « x » стоял коэффициент « 1 ».

    Давайте зададим себе вопрос: «На что нужно разделить « 4 », чтобы
    получить « 1 »?». Ответ очевиден, нужно разделить на « 4 ».

    Используем правило деления и разделим левую и правую части уравнения на « 4 ». Не забудьте, что делить нужно и левую, и правую части.

    Используем сокращение дробей и решим линейное уравнение до конца.

    Как решить уравнение, если « x » отрицательное

    Часто в уравнениях встречается ситуация, когда при « x » стоит отрицательный коэффициент. Как, например, в уравнении ниже.

    Чтобы решить такое уравнение, снова зададим себе вопрос: «На что нужно разделить « −2 », чтобы получить « 1 »?». Нужно разделить на « −2 ».

    Решение простых линейных уравнений

    В этом видео мы разберём целый комплект линейных уравнений, которые решаются по одному и тому же алгоритму - потому и они и называются простейшими.

    Для начала определимся: что такое линейное уравнение и какое их них называть простейшим?

    Линейное уравнение - такое, в котором присутствует лишь одна переменная, причём исключительно в первой степени.

    Под простейшим уравнением подразумевается конструкция:

    Все остальные линейные уравнения сводятся к простейшим с помощью алгоритма:

  3. Раскрыть скобки, если они есть;
  4. Перенести слагаемые, содержащие переменную, в одну сторону от знака равенства, а слагаемые без переменной - в другую;
  5. Привести подобные слагаемые слева и справа от знака равенства;
  6. Разделить полученное уравнение на коэффициент при переменной $x$ .
  7. Разумеется, этот алгоритм помогает не всегда. Дело в том, что иногда после всех этих махинаций коэффициент при переменной $x$ оказывается равен нулю. В этом случае возможны два варианта:

  8. Уравнение вообще не имеет решений. Например, когда получается что-нибудь в духе $0\cdot x=8$, т.е. слева стоит ноль, а справа - число, отличное от нуля. В видео ниже мы рассмотрим сразу несколько причин, по которым возможна такая ситуация.
  9. Решение - все числа. Единственный случай, когда такое возможно - уравнение свелось к конструкции $0\cdot x=0$. Вполне логично, что какой бы $x$ мы ни подставили, все равно получится «ноль равен нулю», т.е. верное числовое равенство.
  10. А теперь давайте посмотрим, как всё это работает на примере реальных задач.

    Примеры решения уравнений

    Сегодня мы занимаемся линейными уравнениями, причем только простейшими. Вообще, под линейным уравнением подразумевается всякое равенство, содержащее в себе ровно одну переменную, и она идет лишь в первой степени.

    Решаются такие конструкции примерно одинаково:

    1. Прежде всего необходимо раскрыть скобки, если они есть (как в нашем последнем примере);
    2. Затем свести подобные
    3. Наконец, уединить переменную, т.е. всё, что связано с переменной - слагаемые, в которых она содержится - перенести в одну сторону, а всё, что останется без неё, перенести в другую сторону.
    4. Затем, как правило, нужно привести подобные с каждой стороны полученного равенства, а после этого останется лишь разделить на коэффициент при «иксе», и мы получим окончательный ответ.

      В теории это выглядит красиво и просто, однако на практике даже опытные ученики старших классов могут допускать обидные ошибки в достаточно простых линейных уравнениях. Обычно ошибки допускаются либо при раскрытии скобок, либо при подсчёте «плюсов» и «минусов».

      Кроме того, бывает так, что линейное уравнение вообще не имеет решений, или так, что решением является вся числовая прямая, т.е. любое число. Эти тонкости мы и разберем в сегодняшнем уроке. Но начнем мы, как вы уже поняли, с самых простых задач.

      Схема решения простейших линейных уравнений

      Для начала давайте я еще раз напишу всю схему решения простейших линейных уравнений:

    5. Раскрываем скобки, если они есть.
    6. Уединяем переменные, т.е. все, что содержит «иксы» переносим в одну сторону, а без «иксов» - в другую.
    7. Приводим подобные слагаемые.
    8. Разделяем все на коэффициент при «иксе».
    9. Разумеется, эта схема работает не всегда, в ней есть определенные тонкости и хитрости, и сейчас мы с ними и познакомимся.

      Решаем реальные примеры простых линейных уравнений

      На первом шаге от нас требуется раскрыть скобки. Но их в этом примере нет, поэтому пропускаем данный этап. На втором шаге нам нужно уединить переменные. Обратите внимание: речь идет лишь об отдельных слагаемых. Давайте запишем:

      Приводим подобные слагаемые слева и справа, но тут уже это сделано. Поэтому переходим к четвертому шагу: разделить на коэффициент:

      Вот мы и получили ответ.

      В этой задаче мы можем наблюдать скобки, поэтому давайте раскроем их:

      И слева и справа мы видим примерно одну и ту же конструкцию, но давайте действовать по алгоритму, т.е. уединяем переменные:

      При каких корнях это выполняется. Ответ: при любых. Следовательно, можно записать, что $x$ - любое число.

      Третье линейное уравнение уже интересней:

      \[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

      Тут есть несколько скобок, однако они ни на что не умножаются, просто перед ними стоят различные знаки. Давайте раскроем их:

      Выполняем второй уже известный нам шаг:

      Выполняем последний шаг - делим все на коэффициент при «икс»:

      Что необходимо помнить при решении линейных уравнений

      Если отвлечься от слишком простых задач, то я бы хотел сказать следующее:

    10. Как я говорил выше, далеко не каждое линейное уравнение имеет решение - иногда корней просто нет;
    11. Даже если корни есть, среди них может затесаться ноль - ничего страшного в этом нет.
    12. Ноль - такое же число, как и остальные, не стоит его как-то дискриминировать или считать, что если у вас получился ноль, то вы что-то сделали неправильно.

      Еще одна особенность связана с раскрытием скобок. Обратите внимание: когда перед ними стоит «минус», то мы его убираем, однако в скобках знаки меняем на противоположные . А дальше мы можем раскрывать ее по стандартным алгоритмам: мы получим то, что видели в выкладках выше.

      Понимание этого простого факта позволит вам не допускать глупые и обидные ошибки в старших классах, когда выполнение подобных действий считается самим собой разумеющимся.

      Решение сложных линейных уравнений

      Перейдем к более сложным уравнениям. Теперь конструкции станут сложнее и при выполнении различных преобразований возникнет квадратичная функция. Однако не стоит этого бояться, потому что если по замыслу автора мы решаем линейное уравнение, то в процессе преобразования все одночлены, содержащие квадратичную функцию, обязательно сократятся.

      Очевидно, что первым делом нужно раскрыть скобки. Давайте это сделаем очень аккуратно:

      Теперь займемся уединением:

      Очевидно, что у данного уравнения решений нет, поэтому в ответе так и запишем:

      Выполняем те же действия. Первый шаг:

      Перенесем все, что с переменной, влево, а без нее - вправо:

      Очевидно, что данное линейное уравнение не имеет решения, поэтому так и запишем:

      либо корней нет.

      Нюансы решения

      Оба уравнения полностью решены. На примере этих двух выражений мы ещё раз убедились, что даже в самых простых линейных уравнениях всё может быть не так просто: корней может быть либо один, либо ни одного, либо бесконечно много. В нашем случае мы рассмотрели два уравнения, в обоих корней просто нет.

      Но я бы хотел обратить ваше внимание на другой факт: как работать со скобками и как их раскрывать, если перед ними стоит знак «минус». Рассмотрим вот это выражение:

      Прежде чем раскрывать, нужно перемножить всё на «икс». Обратите внимание: умножается каждое отдельное слагаемое . Внутри стоит два слагаемых - соответственно, два слагаемых и умножается.

      И только после того, когда эти, казалось бы, элементарные, но очень важные и опасные преобразования выполнены, можно раскрывать скобку с точки зрения того, что после неё стоит знак «минус». Да, да: только сейчас, когда преобразования выполнены, мы вспоминаем, что перед скобками стоит знак «минус», а это значит, что все, что в низ, просто меняет знаки. При этом сами скобки исчезают и, что самое главное, передний «минус» тоже исчезает.

      Точно также мы поступаем и со вторым уравнением:

      Я не случайно обращаю внимание на эти мелкие, казалось бы, незначительные факты. Потому что решение уравнений - это всегда последовательность элементарных преобразований, где неумение чётко и грамотно выполнять простые действия приводит к тому, что ученики старших классов приходят ко мне и вновь учатся решать вот такие простейшие уравнения.

      Разумеется, придёт день, и вы отточите эти навыки до автоматизма. Вам уже не придётся каждый раз выполнять столько преобразований, вы всё будете писать в одну строчку. Но пока вы только учитесь, нужно писать каждое действие отдельно.

      Решение ещё более сложных линейных уравнений

      То, что мы сейчас будем решать, уже сложно назвать простейшими задача, однако смысл остается тем же самым.

      \[\left(7x+1 \right)\left(3x-1 \right)-21=3\]

      Давайте перемножим все элементы в первой части:

      Давайте выполним уединение:

      Выполняем последний шаг:

      Вот наш окончательный ответ. И, несмотря на то, что у нас в процессе решения возникали коэффициенты с квадратичной функцией, однако они взаимно уничтожились, что делает уравнение именно линейным, а не квадратным.

      \[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

      Давайте аккуратно выполним первый шаг: умножаем каждый элемент из первой скобки на каждый элемент из второй. Всего должно получиться четыре новых слагаемых после преобразований:

      А теперь аккуратно выполним умножение в каждом слагаемом:

      Перенесем слагаемые с «иксом» влево, а без - вправо:

      Приводим подобные слагаемые:

      Мы вновь получили окончательный ответ.

      Важнейшее замечание по поводу этих двух уравнений состоит в следующем: как только мы начинаем умножать скобки, в которых находится более чем оно слагаемое, то выполняется это по следующему правилу: мы берем первое слагаемое из первой и перемножаем с каждым элементом со второй; затем берем второй элемент из первой и аналогично перемножаем с каждым элементом со второй. В итоге у нас получится четыре слагаемых.

      Об алгебраической сумме

      На последнем примере я хотел бы напомнить ученикам, что такое алгебраическая сумма. В классической математике под $1-7$ мы подразумеваем простую конструкцию: из единицы вычитаем семь. В алгебре же мы подразумеваем под этим следующее: к числу «единица» мы прибавляем другое число, а именно «минус семь». Этим алгебраическая сумма отличается от обычной арифметической.

      Как только при выполнении всех преобразований, каждого сложения и умножения вы начнёте видеть конструкции, аналогичные вышеописанным, никаких проблем в алгебре при работе с многочленами и уравнениями у вас просто не будет.

      В заключение давайте рассмотрим ещё пару примеров, которые будут ещё более сложными, чем те, которые мы только что рассмотрели, и для их решения нам придётся несколько расширить наш стандартный алгоритм.

      Решение уравнений с дробью

      Для решения подобных заданий к нашему алгоритму придется добавить еще один шаг. Но для начала я напомню наш алгоритм:

    13. Уединить переменные.
    14. Увы, этот прекрасный алгоритм при всей его эффективности оказывается не вполне уместным, когда перед нами дроби. А в том, что мы увидим ниже, у нас и слева, и справа в обоих уравнениях есть дробь.

      Как работать в этом случае? Да всё очень просто! Для этого в алгоритм нужно добавить ещё один шаг, который можно совершить как перед первым действием, так и после него, а именно избавиться от дробей. Таким образом, алгоритм будет следующим:

    15. Избавиться от дробей.
    16. Раскрыть скобки.
    17. Привести подобные.
    18. Разделить на коэффициент.

    Что значит «избавиться от дробей»? И почему выполнять это можно как после, так и перед первым стандартным шагом? На самом деле в нашем случае все дроби являются числовыми по знаменателю, т.е. везде в знаменателе стоит просто число. Следовательно, если мы обе части уравнения домножим на это число, то мы избавимся от дробей.

    Давайте избавимся от дробей в этом уравнении:

    Обратите внимание: на «четыре» умножается все один раз, т.е. если у вас две скобки, это не значит, что каждую из них нужно умножать на «четыре». Запишем:

    \[\left(2x+1 \right)\left(2x-3 \right)=\left(-1 \right)\cdot 4\]

    Выполняем уединение переменной:

    Выполняем приведение подобных слагаемых:

    \[-4x=-1\left| :\left(-4 \right) \right.\]

    Мы получили окончательное решение, переходим ко второму уравнению.

    Здесь выполняем все те же действия:

    Вот, собственно, и всё, что я хотел сегодня рассказать.

    Ключевые моменты

    Ключевые выводы следующие:

  11. Знать алгоритм решения линейных уравнений.
  12. Умение раскрывать скобки.
  13. Не стоит переживать, если где-то у вас появляются квадратичные функции, скорее всего, в процессе дальнейших преобразований они сократятся.
  14. Корни в линейных уравнениях, даже самых простых, бывают трех типов: один единственный корень, вся числовая прямая является корнем, корней нет вообще.
  15. Надеюсь, этот урок поможет вам освоить несложную, но очень важную для дальнейшего понимания всей математики тему. Если что-то непонятно, заходите на сайт, решайте примеры, представленные там. Оставайтесь с нами, вас ждет еще много интересного!

  16. Иррациональное уравнение: учимся решать методом уединения корня
  17. Как решать биквадратное уравнение
  18. Тест к уроку «Сложные выражения с дробями» (легкий)
  19. Пробный ЕГЭ 2012 от 7 декабря. Вариант 1 (без логарифмов)
  20. Видеоурок по задачам C2: расстояние от точки до плоскости
  21. Репетитор по математике: где брать учеников?

Чтобы посмотреть видео, введите свой E-mail и нажмите кнопку «Начать обучение»

  • Репетитор с 12-летним опытом
  • Видеозапись каждого занятия
  • Единая стоимость занятий - 3000 рублей за 60 минут
  • В этом видео мы разберём целый комплект линейных уравнений, которые решаются по одному и тому же алгоритму — потому и они и называются простейшими.

    Для начала определимся: что такое линейное уравнение и какое их них называть простейшим?

    Линейное уравнение — такое, в котором присутствует лишь одна переменная, причём исключительно в первой степени.

    Под простейшим уравнением подразумевается конструкция:

    Все остальные линейные уравнения сводятся к простейшим с помощью алгоритма:

    1. Раскрыть скобки, если они есть;
    2. Перенести слагаемые, содержащие переменную, в одну сторону от знака равенства, а слагаемые без переменной — в другую;
    3. Привести подобные слагаемые слева и справа от знака равенства;
    4. Разделить полученное уравнение на коэффициент при переменной $x$ .

    Разумеется, этот алгоритм помогает не всегда. Дело в том, что иногда после всех этих махинаций коэффициент при переменной $x$ оказывается равен нулю. В этом случае возможны два варианта:

    1. Уравнение вообще не имеет решений. Например, когда получается что-нибудь в духе $0\cdot x=8$, т.е. слева стоит ноль, а справа — число, отличное от нуля. В видео ниже мы рассмотрим сразу несколько причин, по которым возможна такая ситуация.
    2. Решение — все числа. Единственный случай, когда такое возможно — уравнение свелось к конструкции $0\cdot x=0$. Вполне логично, что какой бы $x$ мы ни подставили, все равно получится «ноль равен нулю», т.е. верное числовое равенство.

    А теперь давайте посмотрим, как всё это работает на примере реальных задач.

    Примеры решения уравнений

    Сегодня мы занимаемся линейными уравнениями, причем только простейшими. Вообще, под линейным уравнением подразумевается всякое равенство, содержащее в себе ровно одну переменную, и она идет лишь в первой степени.

    Решаются такие конструкции примерно одинаково:

    1. Прежде всего необходимо раскрыть скобки, если они есть (как в нашем последнем примере);
    2. Затем свести подобные
    3. Наконец, уединить переменную, т.е. всё, что связано с переменной — слагаемые, в которых она содержится — перенести в одну сторону, а всё, что останется без неё, перенести в другую сторону.

    Затем, как правило, нужно привести подобные с каждой стороны полученного равенства, а после этого останется лишь разделить на коэффициент при «иксе», и мы получим окончательный ответ.

    В теории это выглядит красиво и просто, однако на практике даже опытные ученики старших классов могут допускать обидные ошибки в достаточно простых линейных уравнениях. Обычно ошибки допускаются либо при раскрытии скобок, либо при подсчёте «плюсов» и «минусов».

    Кроме того, бывает так, что линейное уравнение вообще не имеет решений, или так, что решением является вся числовая прямая, т.е. любое число. Эти тонкости мы и разберем в сегодняшнем уроке. Но начнем мы, как вы уже поняли, с самых простых задач.

    Схема решения простейших линейных уравнений

    Для начала давайте я еще раз напишу всю схему решения простейших линейных уравнений:

    1. Раскрываем скобки, если они есть.
    2. Уединяем переменные, т.е. все, что содержит «иксы» переносим в одну сторону, а без «иксов» — в другую.
    3. Приводим подобные слагаемые.
    4. Разделяем все на коэффициент при «иксе».

    Разумеется, эта схема работает не всегда, в ней есть определенные тонкости и хитрости, и сейчас мы с ними и познакомимся.

    Решаем реальные примеры простых линейных уравнений

    Задача №1

    На первом шаге от нас требуется раскрыть скобки. Но их в этом примере нет, поэтому пропускаем данный этап. На втором шаге нам нужно уединить переменные. Обратите внимание: речь идет лишь об отдельных слагаемых. Давайте запишем:

    Приводим подобные слагаемые слева и справа, но тут уже это сделано. Поэтому переходим к четвертому шагу: разделить на коэффициент:

    \[\frac{6x}{6}=-\frac{72}{6}\]

    Вот мы и получили ответ.

    Задача №2

    В этой задаче мы можем наблюдать скобки, поэтому давайте раскроем их:

    И слева и справа мы видим примерно одну и ту же конструкцию, но давайте действовать по алгоритму, т.е. уединяем переменные:

    Приведем подобные:

    При каких корнях это выполняется. Ответ: при любых. Следовательно, можно записать, что $x$ — любое число.

    Задача №3

    Третье линейное уравнение уже интересней:

    \[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

    Тут есть несколько скобок, однако они ни на что не умножаются, просто перед ними стоят различные знаки. Давайте раскроем их:

    Выполняем второй уже известный нам шаг:

    \[-x+x+2x=15-6-12+3\]

    Посчитаем:

    Выполняем последний шаг — делим все на коэффициент при «икс»:

    \[\frac{2x}{x}=\frac{0}{2}\]

    Что необходимо помнить при решении линейных уравнений

    Если отвлечься от слишком простых задач, то я бы хотел сказать следующее:

    • Как я говорил выше, далеко не каждое линейное уравнение имеет решение — иногда корней просто нет;
    • Даже если корни есть, среди них может затесаться ноль — ничего страшного в этом нет.

    Ноль — такое же число, как и остальные, не стоит его как-то дискриминировать или считать, что если у вас получился ноль, то вы что-то сделали неправильно.

    Еще одна особенность связана с раскрытием скобок. Обратите внимание: когда перед ними стоит «минус», то мы его убираем, однако в скобках знаки меняем на противоположные . А дальше мы можем раскрывать ее по стандартным алгоритмам: мы получим то, что видели в выкладках выше.

    Понимание этого простого факта позволит вам не допускать глупые и обидные ошибки в старших классах, когда выполнение подобных действий считается самим собой разумеющимся.

    Решение сложных линейных уравнений

    Перейдем к более сложным уравнениям. Теперь конструкции станут сложнее и при выполнении различных преобразований возникнет квадратичная функция. Однако не стоит этого бояться, потому что если по замыслу автора мы решаем линейное уравнение, то в процессе преобразования все одночлены, содержащие квадратичную функцию, обязательно сократятся.

    Пример №1

    Очевидно, что первым делом нужно раскрыть скобки. Давайте это сделаем очень аккуратно:

    Теперь займемся уединением:

    \[-x+6{{x}^{2}}-6{{x}^{2}}+x=-12\]

    Приводим подобные:

    Очевидно, что у данного уравнения решений нет, поэтому в ответе так и запишем:

    \[\varnothing \]

    или корней нет.

    Пример №2

    Выполняем те же действия. Первый шаг:

    Перенесем все, что с переменной, влево, а без нее — вправо:

    Приводим подобные:

    Очевидно, что данное линейное уравнение не имеет решения, поэтому так и запишем:

    \[\varnothing \],

    либо корней нет.

    Нюансы решения

    Оба уравнения полностью решены. На примере этих двух выражений мы ещё раз убедились, что даже в самых простых линейных уравнениях всё может быть не так просто: корней может быть либо один, либо ни одного, либо бесконечно много. В нашем случае мы рассмотрели два уравнения, в обоих корней просто нет.

    Но я бы хотел обратить ваше внимание на другой факт: как работать со скобками и как их раскрывать, если перед ними стоит знак «минус». Рассмотрим вот это выражение:

    Прежде чем раскрывать, нужно перемножить всё на «икс». Обратите внимание: умножается каждое отдельное слагаемое . Внутри стоит два слагаемых — соответственно, два слагаемых и умножается.

    И только после того, когда эти, казалось бы, элементарные, но очень важные и опасные преобразования выполнены, можно раскрывать скобку с точки зрения того, что после неё стоит знак «минус». Да, да: только сейчас, когда преобразования выполнены, мы вспоминаем, что перед скобками стоит знак «минус», а это значит, что все, что в низ, просто меняет знаки. При этом сами скобки исчезают и, что самое главное, передний «минус» тоже исчезает.

    Точно также мы поступаем и со вторым уравнением:

    Я не случайно обращаю внимание на эти мелкие, казалось бы, незначительные факты. Потому что решение уравнений — это всегда последовательность элементарных преобразований, где неумение чётко и грамотно выполнять простые действия приводит к тому, что ученики старших классов приходят ко мне и вновь учатся решать вот такие простейшие уравнения.

    Разумеется, придёт день, и вы отточите эти навыки до автоматизма. Вам уже не придётся каждый раз выполнять столько преобразований, вы всё будете писать в одну строчку. Но пока вы только учитесь, нужно писать каждое действие отдельно.

    Решение ещё более сложных линейных уравнений

    То, что мы сейчас будем решать, уже сложно назвать простейшими задача, однако смысл остается тем же самым.

    Задача №1

    \[\left(7x+1 \right)\left(3x-1 \right)-21{{x}^{2}}=3\]

    Давайте перемножим все элементы в первой части:

    Давайте выполним уединение:

    Приводим подобные:

    Выполняем последний шаг:

    \[\frac{-4x}{4}=\frac{4}{-4}\]

    Вот наш окончательный ответ. И, несмотря на то, что у нас в процессе решения возникали коэффициенты с квадратичной функцией, однако они взаимно уничтожились, что делает уравнение именно линейным, а не квадратным.

    Задача №2

    \[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

    Давайте аккуратно выполним первый шаг: умножаем каждый элемент из первой скобки на каждый элемент из второй. Всего должно получиться четыре новых слагаемых после преобразований:

    А теперь аккуратно выполним умножение в каждом слагаемом:

    Перенесем слагаемые с «иксом» влево, а без — вправо:

    \[-3x-4x+12{{x}^{2}}-12{{x}^{2}}+6x=-1\]

    Приводим подобные слагаемые:

    Мы вновь получили окончательный ответ.

    Нюансы решения

    Важнейшее замечание по поводу этих двух уравнений состоит в следующем: как только мы начинаем умножать скобки, в которых находится более чем оно слагаемое, то выполняется это по следующему правилу: мы берем первое слагаемое из первой и перемножаем с каждым элементом со второй; затем берем второй элемент из первой и аналогично перемножаем с каждым элементом со второй. В итоге у нас получится четыре слагаемых.

    Об алгебраической сумме

    На последнем примере я хотел бы напомнить ученикам, что такое алгебраическая сумма. В классической математике под $1-7$ мы подразумеваем простую конструкцию: из единицы вычитаем семь. В алгебре же мы подразумеваем под этим следующее: к числу «единица» мы прибавляем другое число, а именно «минус семь». Этим алгебраическая сумма отличается от обычной арифметической.

    Как только при выполнении всех преобразований, каждого сложения и умножения вы начнёте видеть конструкции, аналогичные вышеописанным, никаких проблем в алгебре при работе с многочленами и уравнениями у вас просто не будет.

    В заключение давайте рассмотрим ещё пару примеров, которые будут ещё более сложными, чем те, которые мы только что рассмотрели, и для их решения нам придётся несколько расширить наш стандартный алгоритм.

    Решение уравнений с дробью

    Для решения подобных заданий к нашему алгоритму придется добавить еще один шаг. Но для начала я напомню наш алгоритм:

    1. Раскрыть скобки.
    2. Уединить переменные.
    3. Привести подобные.
    4. Разделить на коэффициент.

    Увы, этот прекрасный алгоритм при всей его эффективности оказывается не вполне уместным, когда перед нами дроби. А в том, что мы увидим ниже, у нас и слева, и справа в обоих уравнениях есть дробь.

    Как работать в этом случае? Да всё очень просто! Для этого в алгоритм нужно добавить ещё один шаг, который можно совершить как перед первым действием, так и после него, а именно избавиться от дробей. Таким образом, алгоритм будет следующим:

    1. Избавиться от дробей.
    2. Раскрыть скобки.
    3. Уединить переменные.
    4. Привести подобные.
    5. Разделить на коэффициент.

    Что значит «избавиться от дробей»? И почему выполнять это можно как после, так и перед первым стандартным шагом? На самом деле в нашем случае все дроби являются числовыми по знаменателю, т.е. везде в знаменателе стоит просто число. Следовательно, если мы обе части уравнения домножим на это число, то мы избавимся от дробей.

    Пример №1

    \[\frac{\left(2x+1 \right)\left(2x-3 \right)}{4}={{x}^{2}}-1\]

    Давайте избавимся от дробей в этом уравнении:

    \[\frac{\left(2x+1 \right)\left(2x-3 \right)\cdot 4}{4}=\left({{x}^{2}}-1 \right)\cdot 4\]

    Обратите внимание: на «четыре» умножается все один раз, т.е. если у вас две скобки, это не значит, что каждую из них нужно умножать на «четыре». Запишем:

    \[\left(2x+1 \right)\left(2x-3 \right)=\left({{x}^{2}}-1 \right)\cdot 4\]

    Теперь раскроем:

    Выполняем уединение переменной:

    Выполняем приведение подобных слагаемых:

    \[-4x=-1\left| :\left(-4 \right) \right.\]

    \[\frac{-4x}{-4}=\frac{-1}{-4}\]

    Мы получили окончательное решение, переходим ко второму уравнению.

    Пример №2

    \[\frac{\left(1-x \right)\left(1+5x \right)}{5}+{{x}^{2}}=1\]

    Здесь выполняем все те же действия:

    \[\frac{\left(1-x \right)\left(1+5x \right)\cdot 5}{5}+{{x}^{2}}\cdot 5=5\]

    \[\frac{4x}{4}=\frac{4}{4}\]

    Задача решена.

    Вот, собственно, и всё, что я хотел сегодня рассказать.

    Ключевые моменты

    Ключевые выводы следующие:

    • Знать алгоритм решения линейных уравнений.
    • Умение раскрывать скобки.
    • Не стоит переживать, если где-то у вас появляются квадратичные функции, скорее всего, в процессе дальнейших преобразований они сократятся.
    • Корни в линейных уравнениях, даже самых простых, бывают трех типов: один единственный корень, вся числовая прямая является корнем, корней нет вообще.

    Надеюсь, этот урок поможет вам освоить несложную, но очень важную для дальнейшего понимания всей математики тему. Если что-то непонятно, заходите на сайт, решайте примеры, представленные там. Оставайтесь с нами, вас ждет еще много интересного!

    Что такое уравнение?

    Уравнение – одно из краеугольных понятий всей математики. Как школьной, так и высшей. Имеет смысл разобраться, правда? Тем более, что это очень простое понятие. Ниже сами убедитесь. :) Так что же такое уравнение?

    То, что это слово однокоренное со словами «равный», «равенство», возражений, думаю, ни у кого не вызывает. Уравнение – это два математических выражения, соединённых между собой знаком равенства «=». Но… не каких попало. А таких, в которых (хотя бы в одном) содержится неизвестная величина . Или по-другому переменная величина . Или сокращённо просто «переменная». Переменных может быть одна или несколько. В школьной математике чаще всего рассматриваются уравнения с одной переменной. Которая обычно обозначается буквой x . Или другими последними буквами латинского алфавита - y , z , t и так далее.

    Мы пока тоже будем рассматривать уравнения с одной переменной. С двумя переменными или более – в специальном уроке.

    Что значит решить уравнение?

    Идём дальше. Переменная в выражениях, входящих в уравнение, может принимать любые допустимые значения. На то она и переменная. :) При каких-то значениях переменной получается верное равенство, а при каких-то – нет. Решить уравнение – это значит найти все такие значения переменной, при подстановке которых в исходное уравнение получается верное равенство . Или, более научно, тождество . Например, 5=5, 0=0, -10=-10. И так далее. :) Или доказать, что таких значений переменной не существует.

    Я специально акцентирую внимание на слове «исходное». Почему - будет ясно чуть ниже.

    Эти самые значения переменной, при подстановке которых уравнение обращается в тождество, называются очень красиво - корнями уравнения . Если доказано, что таких значений нет, то в таком случае говорят, что уравнение не имеет корней .

    Зачем нужны уравнения?

    Для чего нам нужны уравнения? В первую очередь, уравнения – очень мощный и наиболее универсальный инструмент для решения задач . Самых разных. :) В школе, как правило, работают с текстовыми задачами . Это задачи на движение, на работу, на проценты и многие-многие другие. Однако применение уравнений не ограничивается одними лишь школьными задачками про бассейны, трубы, поезда и табуретки. :)

    Без умения составлять и решать уравнения не решить ни одной сколь-нибудь серьёзной научной задачи - физической, инженерной или экономической. Например, рассчитать, куда попадёт ракета. Или ответить на вопрос, выдержит или не выдержит нагрузку какая-нибудь ответственная конструкция (лифт или мост, например). Или спрогнозировать погоду, рост (или падение) цен или доходов…

    В общем, уравнение – ключевая фигура в решении самых разнообразных вычислительных задач.

    Какие бывают уравнения?

    Уравнений в математике несметное количество. Самых разных видов. Однако все уравнения можно условно разделить всего на 4 класса:

    1) Линейные,

    2) Квадратные,

    3) Дробные (или дробно-рациональные),

    4) Прочие.

    Разные виды уравнений требуют и разного подхода к их решению: линейные уравнения решаются одним способом, квадратные – другим, дробные – третьим, тригонометрические, логарифмические, показательные и прочие – тоже решаются своими методами.

    Прочих уравнений, разумеется, больше всего. Это и иррациональные, и тригонометрические, и показательные, и логарифмические, и многие другие уравнения. И даже дифференциальные уравнения (для студентов), где неизвестным является не число, а функция. Или даже целое семейство функций. :) В соответствующих уроках мы подробно разберём все эти типы уравнений. А здесь у нас – базовые приёмы, которые применимы для решения совершенно любых (да-да, любых!) уравнений. Называются эти приёмы равносильные преобразования уравнений . Их всего два. И нигде их не обойти. Так что знакомимся!

    Как решать уравнения? Тождественные (равносильные) преобразования уравнений.

    Решение любого уравнения заключается в поэтапном преобразовании входящих в него выражений. Но преобразований не абы каких, а таких, чтобы суть всего уравнения не менялась . Несмотря на то, что после каждого преобразования уравнение будет видоизменяться и в конечном счёте станет совсем не похоже на исходное. Такие преобразования в математике называются равносильными или тождественными . Среди всего многообразия тождественных преобразований уравнений выделяется два базовых . О них и пойдёт речь. Да-да, всего два! И каждое из них заслуживает отдельного внимания. Применение этих двух тождественных преобразований в том или ином порядке гарантирует успех в решении 99% всех уравнений.

    Итак, знакомимся!

    Первое тождественное преобразование:

    К обеим частям уравнения можно прибавить (или отнять) любое (но одинаковое!) число или выражение (в том числе и с переменной).

    Суть уравнения при этом останется прежней. Это преобразование вы применяете всюду, наивно думая, что переносите какие-то члены из одной части уравнения в другую, меняя знак. :)

    Например, такое крутое уравнение:

    Тут и думать нечего: переносим минус тройку вправо, меняя минус на плюс:

    А что же происходит в действительности? А на самом деле вы прибавляете к обеим частям уравнения тройку ! Вот так:

    Суть всего уравнения от прибавления к обеим частям тройки не меняется. Слева остаётся чистый икс (чего мы, собственно, и добиваемся), а справа – что уж получится.

    Перенос слагаемых из одной части в другую – это сокращённый вариант первого тождественного преобразования. Ошибиться здесь можно лишь в одном – забыть сменить знак при переносе. Например, такое уравнение:

    Дело нехитрое. Работаем прямо по заклинанию: с иксами влево, без иксов – вправо. Какое слагаемое с иксом у нас справа? Что? 2x? Неверно! Справа у нас -2x (минус два икс)! Поэтому в левую часть это слагаемое перенесётся с плюсом :

    Полдела сделано, иксы собрали слева. Осталось перенести единицу вправо. Опять вопрос – с каким знаком? Слева перед единицей ничего не написано – значит, подразумевается, что перед ней стоит плюс . Поэтому вправо единичка перенесётся уже с минусом :

    Вот почти и всё. Слева приводим подобные, а справа – считаем. И получаем:

    А теперь проанализируем наши махинации с переносом слагаемых. Что мы сделали, когда перенесли -2x влево? Да! Мы прибавили к обеим частям нашего злого уравнения выражение 2x. Я же говорил, что прибавлять (отнимать) мы имеем право любое число и даже выражение с иксом! Лишь бы одно и то же. :) А когда перенесли единичку вправо? Совершенно верно! Мы отняли от обеих частей уравнения единичку. Вот и всё.) Вот и вся суть первого равносильного преобразования.

    Или такой пример – для старшеклассников:

    Уравнение логарифмическое. Ну и что? Какая разница? Всё равно первым шагом делаем базовое тождественное преобразование – переносим слагаемое с переменной (то есть, -log 3 x) влево, а числовое выражение log 3 4 переносим вправо. Со сменой знака, разумеется:

    Вот и всё. Кто дружит с логарифмами, тот в уме дорешает уравнение и получит:

    Что? Хотите синусы? Пожалуйста, вот вам синусы:

    Снова выполняем первое тождественное преобразование - переносим sin x влево (с минусом), а -1/4 переносим вправо (с плюсом):

    Получили простейшее тригонометрическое уравнение с синусом, решить которое для знающих также не составляет труда.

    Видите, насколько универсально первое равносильное преобразование! Встречается везде и всюду и не обойти его никак. Поэтому надо уметь его делать на автомате. Главное – не забывать менять знак при переносе! Продолжаем знакомиться с тождественными преобразованиями уравнений.)

    Второе тождественное преобразование:

    Обе части уравнения можно умножить (разделить) на одно и то же неравное нулю число или выражение.

    Это тождественное преобразование мы тоже постоянно применяем, когда нам в уравнении мешают какие-то коэффициенты и мы хотим от них избавиться. Безопасно для самого уравнения. :) Например, такое злое уравнение:

    Тут каждому ясно, что x = 3 . А как вы догадались? Подобрали? Или ткнули пальцем в небо и угадали?

    Чтобы не подбирать и не гадать (мы с вами всё-таки математики, а не гадалки:)), нужно понять, что вы просто поделили обе части уравнения на четвёрку. Которая нам и мешает.

    Вот так:

    Эта палка с делением означает, что на четвёрку делятся обе части нашего уравнения. Вся левая часть и вся правая часть:

    Слева четвёрки благополучно сокращаются и остаётся икс в гордом одиночестве. А справа при делении 12 на 4 получается, естественно, тройка. :)

    Или такое уравнение:

    Что делать с одной седьмой? Перенести вправо? Не-а, нельзя! Одна седьмая с иксом умножением связана. Коэффициент, понимаешь. :) Нельзя коэффициент оторвать и перенести отдельно от икса. Только всё выражение (1/7)x целиком. Но – незачем. :) Снова вспоминаем про умножение/деление. Что нам мешает? Дробь 1/7, не так ли? Вот и давайте избавимся от неё. Как? А в результате какого действия у нас пропадает дробь? Дробь у нас пропадает при умножении на число, равное её знаменателю! Вот и умножим обе части нашего уравнения на 7:

    Слева семёрки сократятся и останется как раз одинокий икс, а справа, если вспомнить таблицу умножения, получится 21:

    Теперь пример для старшеклассников:

    Чтобы добраться до икса и тем самым решить наше злое тригонометрическое уравнение, нам надо сначала получить слева чистый косинус, безо всяких коэффициентов. А двойка мешает. :) Вот и делим на 2 всю левую часть:

    Но тогда и правую часть тоже придётся разделить на двойку: это уже МАТЕМАТИКА требует. Делим:

    Получили справа табличное значение косинуса. И теперь уравнение решается за милую душу.)

    Всё понятно с умножением/делением? Отлично! Но… внимание! В данном преобразовании, несмотря на всю его простоту, кроется источник очень досадных ошибок! Называется он потеря корней и приобретение посторонних корней .

    Выше я уже сказал, что обе части уравнения можно умножать (делить) на любое число или выражение с иксом . Но с одной важной оговоркой: выражение, на которое умножаем (делим) должно быть отлично от нуля . Именно этот пунктик, который многие поначалу просто игнорируют, и приводит к таким досадным промахам. Собственно, смысл этого ограничения понятен: на ноль умножать глупо, а делить вообще нельзя. Разберёмся, что к чему? Начнём с деления и с потери корней .

    Допустим, есть у нас такое вот такое уравнение:

    Здесь прямо-таки руки чешутся взять и поделить обе части уравнения на общую скобку (x-1):

    Допустим, в задании на ЕГЭ сказано найти сумму корней этого уравнения. Что в ответ писать будем? Тройку? Если вы решили, что тройку, то вы попали в засаду . Под названием «потеря корней». :) В чём же дело?

    А давайте в исходном уравнении раскроем скобки и соберём всё слева:

    Получили классическое квадратное уравнение. Решаем через дискриминант (или через теорему Виета) и получаем два корня:

    Стало быть, сумма корней равна 1+3 = 4. Четыре, а не три! Куда у нас «пропал» корень

    x = 1

    При первом способе решения? А единичка у нас пропала как раз во время деления обеих частей на скобочку (x-1). Почему так произошло? А всё потому, что при x = 1 у нас обнуляется эта самая скобочка (x-1). А делить мы имеем право только на отличное от нуля выражение! Как можно было бы избежать потери этого корня? И вообще потери корней? Для этого, во-первых, перед делением на какое-то выражение с иксом всегда дописываем условие, что это выражение отлично от нуля. И находим нули этого выражения . Вот так (на примере нашего уравнения):

    А во-вторых, чтобы какие-то корни у нас не пропали в процессе деления, мы должны отдельно проверить в качестве кандидатов в корни все нули нашего выражения (того, на которое делим) . Как? Просто подставить их в исходное уравнение и посчитать. В нашем случае проверяем единичку:

    Всё честно. Значит, единичка – корень!

    А вообще, на будущее, всегда старайтесь избегать деления на выражение с иксом. Потеря корней – штука очень опасная и досадная! Применяйте любые другие способы – раскрытие скобок и особенно разложение на множители . Разложение на множители - самый простой и безопасный способ избежать потери корней. Для этого собираем всё слева, потом выносим общий множитель (на который так хотим «сократить») за скобки, раскладываем на множители и дальше приравниваем каждый получившийся множитель к нулю. Например, наше уравнение можно было бы вполне безобидно решить не только приведением к квадратному, но и разложением на множители. Смотрите сами:

    Переносим влево всё выражение (x-1) целиком. Со знаком минус:

    Выносим (x-1) за скобку как общий множитель и раскладываем на множители:

    Произведение равно нулю, когда хотя бы один из множителей равен нулю . Приравниваем теперь (в уме!) каждую скобку к нулю и получаем наши законные два корня:

    И ни один корень не потерялся!

    Разберём теперь противоположную ситуацию – приобретение посторонних корней. Такая ситуация возникает при умножении обеих частей уравнения на выражение с иксом. Сплошь и рядом встречается при решении дробно-рациональных уравнений. Например, такое несложное уравнение:

    Дело знакомое – умножаем обе части на знаменатель, чтобы избавиться от дроби и получить уравнение в линеечку:

    Приравниваем каждый множитель к нулю и получаем два корня:

    Вроде бы, всё хорошо. Но попробуем сделать элементарную проверку. И если при x = 0 у нас всё славненько срастётся, получится тождество 2=2, то при x = 1 получится деление на ноль. Чего делать нельзя категорически. Не годится единичка в качестве корня нашего уравнения. В таких случаях говорят, что x = 1 – так называемый посторонний корень . Единичка является корнем нашего нового уравнения без дроби x(x-1) = 0, но не является корнем исходного дробного уравнения. Как же появляется этот посторонний корень? Он появляется при домножении обеих частей на знаменатель x-1. Который при x = 1 как раз обращается в ноль! А мы имеем право умножать только на отличное от нуля выражение!

    Как же быть? Вообще не умножать? Тогда мы совсем ничего решить не сможем. Каждый раз проверку делать? Можно. Но зачастую трудоёмко, если исходное уравнение слишком накрученное. В таких случаях спасают три волшебные буквы - ОДЗ. О бласть Д опустимых З начений. И чтобы исключить появление посторонних корней, при умножении на выражение с иксом всегда надо дополнительно записывать ОДЗ. В нашем случае:

    Вот теперь при этом ограничении можно смело умножать обе части на знаменатель. Все вредные последствия от такого умножения (т.е. посторонние корни) мы исключим по ОДЗ. И нашу единичку безжалостно выкинем.

    Итак, появление посторонних корней не так опасно, как потеря: ОДЗ – штука мощная. И жёсткая. Она нам всегда отсеет всё лишнее. :) Мы с ОДЗ будем дружить и подробнее познакомимся в отдельном уроке.

    Вот и все тождественные преобразования.) Всего два. Однако у неопытного ученика могут возникать некоторые трудности, связанные с последовательностью их применения: в каких-то примерах начинают с домножения (или деления), в каких-то – с переноса. Например, такое линейное уравнение:

    С чего начинать? Можно начать с переноса:

    А можно сначала поделить обе части на пятёрку, а затем – переносить. Тогда числа попроще станут и считать будет легче:

    Как видим, и так, и сяк можно. Вот и возникает у некоторых учеников вопрос: «Как правильно?» Ответ: «По-всякому правильно!» Кому как удобнее. :) Лишь бы ваши действия не противоречили правилам математики. А последовательность этих самых действий зависит исключительно от личных предпочтений и привычек решающего. Однако, с опытом такие вопросы отпадут сами собой, и в итоге не математика будет командовать вами, а вы – математикой. :)

    В заключение хочу отдельно сказать о так называемых условно тождественных преобразованиях , справедливых при некоторых условиях . Например, возведение обеих частей уравнения в одну и ту же степень. Или извлечение корня из обеих частей. Если показатель степени нечётный, то ограничений никаких – возводите и извлекайте без опасений. А вот если чётный, то такое преобразование будет тождественным только если обе части уравнения неотрицательны . Об этих подводных камнях мы подробно поговорим в теме про иррациональные уравнения.