Решение линейных неравенств с модулем. Метод интервалов – универсальный метод решения неравенств с модулем

Математика является символом мудрости науки ,

образцом научной строгости и простоты ,

эталоном совершенства и красоты в науке.

Российский философ, профессор А.В. Волошинов

Неравенства с модулем

Наиболее сложно решаемыми задачами школьной математики являются неравенства , содержащие переменные под знаком модуля. Для успешного решения таких неравенств необходимо хорошо знать свойства модуля и иметь навыки их использования.

Основные понятия и свойства

Модуль (абсолютная величина) действительного числа обозначается и определяется следующим образом:

К простым свойствам модуля относятся следующие соотношения:

И .

Отметим , что последние два свойства справедливы для любой четной степени.

Кроме того , если , где , то и

Более сложные свойства модуля , которые можно эффективно использовать при решении уравнений и неравенств с модулями , формулируются посредством следующих теорем:

Теорема 1. Для любых аналитических функций и справедливо неравенство .

Теорема 2. Равенство равносильно неравенству .

Теорема 3. Равенство равносильно неравенству .

Наиболее распространенными в школьной математике неравенствами , содержащие неизвестные переменные под знаком модуля , являются неравенства вида и , где некоторая положительная константа.

Теорема 4. Неравенство равносильно двойному неравенству , а решение неравенства сводится к решению совокупности неравенств и .

Данная теорема является частным случаем теорем 6 и 7.

Более сложными неравенствами , содержащие модуль, являются неравенства вида , и .

Методы решения таких неравенств можно сформулировать посредством следующих трех теорем.

Теорема 5. Неравенство равносильно совокупности двух систем неравенств

И (1)

Доказательство. Так как , то

Отсюда вытекает справедливость (1).

Теорема 6. Неравенство равносильно системе неравенств

Доказательство. Так как , то из неравенства следует , что . При таком условии неравенство и при этом вторая система неравенств (1) окажется несовместной.

Теорема доказана.

Теорема 7. Неравенство равносильно совокупности одного неравенства и двух систем неравенств

И (3)

Доказательство. Поскольку , то неравенство всегда выполняется , если .

Пусть , тогда неравенство будет равносильно неравенству , из которого вытекает совокупность двух неравенств и .

Теорема доказана.

Рассмотрим типовые примеры решения задач на тему «Неравенства , содержащие переменные под знаком модуля».

Решение неравенств с модулем

Наиболее простым методом решения неравенств с модулем является метод , основанный на раскрытии модулей. Этот метод является универсальным , однако в общем случае его применение может привести к весьма громоздким вычислениям. Поэтому учащиеся должны знать и другие (более эффективные) методы и приемы решения таких неравенств. В частности , необходимо иметь навыки применения теорем , приведенных в настоящей статье.

Пример 1. Решить неравенство

. (4)

Решение. Неравенство (4) будем решать «классическим» методом – методом раскрытия модулей. С этой целью разобьем числовую ось точками и на интервалы и рассмотрим три случая.

1. Если , то , , , и неравенство (4) принимает вид или .

Так как здесь рассматривается случай , то является решением неравенства (4).

2. Если , то из неравенства (4) получаем или . Так как пересечение интервалов и является пустым , то на рассматриваемом интервале решений неравенства (4) нет.

3. Если , то неравенство (4) принимает вид или . Очевидно , что также является решением неравенства (4).

Ответ: , .

Пример 2. Решить неравенство .

Решение. Положим , что . Так как , то заданное неравенство принимает вид или . Поскольку , то и отсюда следует или .

Однако , поэтому или .

Пример 3. Решить неравенство

. (5)

Решение. Так как , то неравенство (5) равносильно неравенствам или . Отсюда , согласно теореме 4 , имеем совокупность неравенств и .

Ответ: , .

Пример 4. Решить неравенство

. (6)

Решение. Обозначим . Тогда из неравенства (6) получаем неравенства , , или .

Отсюда , используя метод интервалов , получаем . Так как , то здесь имеем систему неравенств

Решением первого неравенства системы (7) является объединение двух интервалов и , а решением второго неравенства – двойное неравенство . Отсюда следует , что решение системы неравенств (7) представляет собой объединение двух интервалов и .

Ответ: ,

Пример 5. Решить неравенство

. (8)

Решение. Преобразуем неравенство (8) следующим образом:

Или .

Применяя метод интервалов , получаем решение неравенства (8).

Ответ: .

Примечание. Если в условии теоремы 5 положить и , то получим .

Пример 6. Решить неравенство

. (9)

Решение. Из неравенства (9) следует . Преобразуем неравенство (9) следующим образом:

Или

Так как , то или .

Ответ: .

Пример 7. Решить неравенство

. (10)

Решение. Так как и , то или .

В этой связи и неравенство (10) принимает вид

Или

. (11)

Отсюда следует, что или . Так как , то и из неравенства (11) вытекает или .

Ответ: .

Примечание. Если к левой части неравенства (10) применить теорему 1 , то получим . Отсюда и из неравенства (10) следует , что или . Так как , то неравенство (10) принимает вид или .

Пример 8. Решить неравенство

. (12)

Решение. Так как , то и из неравенства (12) следует или . Однако , поэтому или . Отсюда получаем или .

Ответ: .

Пример 9. Решить неравенство

. (13)

Решение. Согласно теореме 7 решением неравенства (13) являются или .

Пусть теперь . В таком случае и неравенство (13) принимает вид или .

Если объединить интервалы и , то получим решение неравенства (13) вида .

Пример 10. Решить неравенство

. (14)

Решение. Перепишем неравенство (14) в равносильном виде: . Если к левой части данного неравенства применить теорему 1, то получим неравенство .

Отсюда и из теоремы 1 следует , что неравенство (14) выполняется для любых значений .

Ответ: любое число.

Пример 11. Решить неравенство

. (15)

Решение. Применяя теорему 1 к левой части неравенства (15) , получаем . Отсюда и из неравенства (15) вытекает уравнение , которое имеет вид .

Согласно теореме 3 , уравнение равносильно неравенству . Отсюда получаем .

Пример 12. Решить неравенство

. (16)

Решение . Из неравенства (16), согласно теореме 4, получаем систему неравенств

При решении неравенства воспользуемся теоремой 6 и получим систему неравенств из которой следует .

Рассмотрим неравенство . Согласно теореме 7 , получаем совокупность неравенств и . Второе неравенство совокупности справедливо для любого действительного .

Следовательно , решением неравенства (16) являются .

Пример 13. Решить неравенство

. (17)

Решение. Согласно теореме 1 можно записать

(18)

Принимая во внимание неравенство (17), делаем вывод о том, что оба неравенства (18) обращаются в равенства, т.е. имеет место система уравнений

По теореме 3 данная система уравнений равносильна системе неравенств

или

Пример 14. Решить неравенство

. (19)

Решение. Так как , то . Умножим обе части неравенства (19) на выражение , которое для любых значений принимает только положительные значения. Тогда получим неравенство, которое равносильно неравенству (19), вида

Отсюда получаем или , где . Так как и , то решением неравенства (19) являются и .

Ответ: , .

Для более глубокого изучения методов решения неравенств с модулем можно посоветовать обратиться к учебным пособиям , приведенных в списке рекомендованной литературы.

1. Сборник задач по математике для поступающих во втузы / Под ред. М.И. Сканави. – М.: Мир и Образование , 2013. – 608 с.

2. Супрун В.П. Математика для старшеклассников: методы решения и доказательства неравенств. – М.: Ленанд / URSS , 2018. – 264 с.

3. Супрун В.П. Математика для старшеклассников: нестандартные методы решения задач. – М.: КД «Либроком» / URSS , 2017. – 296 с.

Остались вопросы?

Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Чем больше человек понимает, тем сильнее в нем желание понимать

Фома Аквинский

Метод интервалов позволяет решать любые уравнения, содержащие модуль. Суть этого метода в том, чтобы разбить числовую ось на несколько участков (интервалов), причем разбить ось нужно именно нулями выражений, стоящих в модулях. Затем на каждом из получившихся участков всякое подмодульное выражение либо положительно, либо отрицательно. Поэтому каждый из модулей может быть раскрыт или со знаком минус, или со знаком плюс. После этих действий остается лишь решить каждое из полученных простых уравнений на рассматриваемом интервале и объединить полученные ответы.

Рассмотрим данный метод на конкретном примере.

|x + 1| + |2x – 4| – |x + 3| = 2x – 6.

1) Найдем нули выражений, стоящих в модулях. Для этого нужно приравняем их к нулю, и решить полученные уравнения.

x + 1 = 0 2x – 4 = 0 x + 3 = 0

x = -1 2x = 4 x = -3

2) Расставим получившиеся точки в нужном порядке на координатной прямой. Они разобьют всю ось на четыре участка.

3) Определим на каждом из получившихся участков знаки выражений, стоящих в модулях. Для этого подставляем в них любые числа с интересующих нас интервалов. Если результат вычислений – число положительное, то в таблице ставим «+», а если число отрицательное, то ставим «–». Это можно изобразить так:

4) Теперь будем решать уравнение на каждом из четырех интервалов, раскрывая модули с теми знаками, которые проставлены в таблице. Итак, рассмотрим первый интервал:

I интервал (-∞; -3). На нем все модули раскрываются со знаком «–». Получим следующее уравнение:

-(x + 1) – (2x – 4) – (-(x + 3)) = 2x – 6. Приведем подобные слагаемые, раскрыв предварительно скобки в полученном уравнении:

X – 1 – 2x + 4 + x + 3 = 2x – 6

Полученный ответ не входит в рассматриваемый интервал, поэтому в окончательный ответ писать его не надо.

II интервал [-3; -1). На этом интервале в таблице стоят знаки «–», «–», «+». Именно так и раскрываем модули исходного уравнения:

-(x + 1) – (2x – 4) – (x + 3) = 2x – 6. Упростим, раскрыв при этом скобки:

X – 1 – 2x + 4 – x – 3 = 2x – 6. Приведем в полученном уравнении подобные:

x = 6/5. Полученное число не принадлежит рассматриваемому интервалу, поэтому оно не является корнем исходного уравнения.

III интервал [-1; 2). Раскрываем модули исходного уравнения с теми знаками, которые стоят на рисунке в третьей колонке. Получаем:

(x + 1) – (2x – 4) – (x + 3) = 2x – 6. Избавимся от скобок, перенесем слагаемые, содержащие переменную x в левую часть уравнения, а не содержащие x в правую. Будем иметь:

x + 1 – 2x + 4 – x – 3 = 2x – 6

В рассматриваемый интервал число 2 не входит.

IV интервал ) – они автоматом посчитают это за неправильный ответ. Также при тестировании, если задано нестрогое неравенство с модулями, то среди решений ищите области с квадратными скобками.

На интервале (-3;0) раскрывая модуль меняем знак функции на противоположный

Учитывая область раскрытия неравенства, решение будет иметь вид

Вместе с предыдущей областью это даст два полуинтервала

Пример 5. Найти решение неравенства
9x^2-|x-3|>=9x-2

Решение:
Задано нестрогое неравенство, подмодульная функция которого равна нулю в точке x=3. При меньших значениях она отрицательная, при больших – положительная. Раскрываем модуль на интервале x<3.

Находим дискриминант уравнения

и корни

Подставляя точку ноль, выясняем, что на промежутке [-1/9;1] квадратичная функция отрицательна, следовательно промежуток является решением. Далее раскрываем модуль при x>3

МОУ «Хвастовичская средняя школа»

«Метод интервалов для решения уравнений и неравенств с несколькими модулями»

Исследовательская работа по математике

Выполнила:

ученица 10«б» класса

Голышева Евгения

Руководитель:

учитель математики

Шапенская Е.Н.

Введение…………………………………………………………………………… … ….3 Глава 1.Методы решения задач с несколькими модулями…………………….............4 1.1.Определение модуля. Решение по определению.…………………….....................4 1.2 Решение уравнений с несколькими модулями, используя метод интервалов…...5 1.3. Задачи с несколькими модулями. Методы решения……………………………....7 1.4. Метод интервалов в задачах с модулями………………………………………......9 Глава 2. Уравнения и неравенства, содержащие модули………………………….….11 2.1 Решения уравнений с несколькими модулями, используя метод интервала..….11 2.2 Решения неравенств с несколькими модулями, используя метод интервала.…13 Заключение……………………………………………………………………………...15 Литература………………………………………………………………….……….….16

Введение

Понятие абсолютной величины является одной из важнейших характеристик числа как в области действительных, так и в области комплексных чисел. Это понятие широко применяется не только в различных разделах школьного курса математики, но и в курсах высшей математики, физики и технических наук, изучаемых в вузах. Задачи, связанные с абсолютными величинами, часто встречаются на математических олимпиадах, вступительных экзаменах в вузы и на ЕГЭ.

Тема: «Метод интервалов для решения уравнений и неравенств с несколькими модулями методом интервала».

Объективная область: математика.

Объект исследования: решение уравнений и неравенств с модулем.

Предмет исследования: метод интервалов для решения с несколькими модулями.

Цель исследования: выявить эффективность решения уравнений и неравенств с несколькими модулями методом интервала.

Гипотеза: если пользоваться методом интервалов для решения неравенств и уравнений с несколькими модулями, то можно значительно облегчить свою работу.

Методы работы: сбор информации и её анализ.

Задачи:

    Изучить литературу по данной теме.

    Рассмотреть решения неравенств и уравнений с несколькими модулями.

    Выявить наиболее эффективный способ решения.

Практическая направленность проекта:

Данную работу можно использовать в качестве учебного пособия для учащихся и методического пособия для учителя.

Глава 1.

1.1.Определение модуля. Решение по определению.

По определению, модуль, или абсолютная величина, неотрицательного числа a совпадает с самим числом, а модуль отрицательного числа равен противоположному числу, то есть – a:

Модуль числа всегда неотрицателен. Рассмотрим примеры.

Пример 1. Решить уравнение |–x| = –3.

Здесь разбор случаев устраивать не нужно, потому что абсолютная величина числа всегда неотрицательна, и значит, данное уравнение не имеет решений.

Запишем решение этих простейших уравнений в общем виде:

Пример 2. Решить уравнение |x| = 2 – x.

Решение. При x 0 имеем уравнение x = 2 – x, т.е. x = 1. Поскольку 1 0, x = 1 – корень исходного уравнения. Во втором случае (x

Ответ: x = 1.

Пример 3. Решить уравнение 3|x – 3| + x = –1.

Решение. Здесь разбиение на случаи определяется знаком выражения x – 3. При x – 3 ³ 0 имеем 3x – 9 + x = –1 Û x = 2. Но 2 – 3 0.

Ответ: уравнение корней не имеет.

Пример 4. Решить уравнение |x – 1| = 1 – x.

Решение. Поскольку 1 – x = – (x – 1), непосредственно из определения модуля следует, что уравнению удовлетворяют те и только те x, для которых x – 1 0. Это уравнение свелось к неравенству, и ответом является целый промежуток (луч).

Ответ: x 1.

1.2. Решение уравнений с модулем с помощью систем.

Разобранные ранее примеры позволяют сформулировать правила освобождения от знака модуля в уравнениях. Для уравнений вида |f(x)| = g(x) таких правил два:

1-е правило: |f(x)| = g(x) Û (1)
2-е правило: |f(x)| = g(x) Û (2)

Поясним используемые здесь обозначения. Фигурные скобки обозначают системы, а квадратные – совокупности.

Решения системы уравнений – это значения переменной, одновременно удовлетворяющие всем уравнениям системы.

Решениями совокупности уравнений являются все значения переменной, каждое из которых есть корень хотя бы одного из уравнений совокупности.

Два уравнения равносильны, если любое решение каждого из них является и решением другого, иначе говоря, если множества их решений совпадают.

Если уравнение содержит несколько модулей, то от них можно избавляться по очереди, пользуясь приведенными правилами. Но обычно есть более короткие пути. Мы познакомимся с ними позже, а сейчас рассмотрим решение самого простого из таких уравнений:

|f(x)| = |g(x)| Û

Эта равносильность следует из того очевидного факта, что если равны модули двух чисел, то сами числа либо равны, либо противоположны.

Пример 1 . Решить уравнение |x 2 – 7x + 11| = x + 1.
Решение. Избавимся от модуля двумя описанными выше способами:

1 способ: 2 способ:

Как видим, в обоих случаях приходится решать те же самые два квадратных уравнения, но в первом случае их сопровождают квадратные неравенства, а во втором – линейное. Поэтому второй способ для данного уравнения проще. Решая квадратные уравнения, находим корни первого , оба корня удовлетворяют неравенству . Дискриминант второго уравнения отрицателен, следовательно, уравнение корней не имеет.

Ответ: .
Пример 2 . Решить уравнение |x 2 – x – 6| = |2x 2 + x – 1|.

Решение. Мы уже знаем, что рассматривать (целых 4) варианта распределения знаков выражений под модулями здесь не нужно: это уравнение равносильно совокупности двух квадратных уравнений без каких-либо дополнительных неравенств: Которая равносильна: Первое уравнение совокупности решений не имеет (его дискриминант отрицателен), второе уравнение имеет два корня .

1.3. Задачи с несколькими модулями. Методы решения.

Последовательное раскрытие модулей.

Есть два основных подхода к решению уравнений и неравенств, содержащих несколько модулей. Можно назвать их "последовательным" и "параллельным". Сейчас познакомимся с первым из них.

Его идея в том, что сначала один из модулей изолируется в одной части уравнения (или неравенства) и раскрывается одним из описанных ранее методов. Затем то же самое повторяется с каждым из получившихся в результате уравнений с модулями и так продолжается, пока мы не избавимся ото всех модулей.

Пример1. Решить уравнение: +

Решение. Уединим второй модуль и раскроем его, пользуясь первым способом, то есть просто определением абсолютной величины:

К полученным двум уравнениям применяем второй способ освобождения от модуля:

Наконец, решаем получившиеся четыре линейных уравнения и отбираем те их корни, которые удовлетворяют соответствующим неравенствам. В результате остаются лишь два значения: x = –1 и .

Ответ: -1; .

Параллельное раскрытие модулей.

Можно снять сразу все модули в уравнении или неравенстве и выписать все возможные сочетания знаков подмодульных выражений. Если в уравнении n модулей, то вариантов будет 2 n , ибо каждое из n выражений, находящихся под модулем, при снятии модуля может получить один из двух знаков – плюс или минус. В принципе, нам надо решить все 2 n уравнений (или неравенств), освобожденных от модулей. Но их решения будут и решениями исходной задачи, только если они лежат в областях, где соответствующее уравнение (неравенство) совпадает с исходным. Эти области определяются знаками выражений под модулями. Следующее неравенство мы уже решали, так что вы можете сравнить разные подходы к решению.

Пример 2 .+
Решение.

Рассмотрим 4 возможных набора знаков выражений под модулями.

Лишь первый и третий из этих корней удовлетворяют соответствующим неравенствам, а значит, и исходному уравнению.

Ответ: -1; .

Аналогично можно решать любые задачи с несколькими модулями. Но, как всякий универсальный метод, этот способ решения далеко не всегда оптимален. Ниже мы увидим, как его можно усовершенствовать.

1.4. Метод интервалов в задачах с модулями

Присмотревшись внимательнее к условиям, задающим разные варианты распределения знаков подмодульных выражений в предыдущем решении, мы увидим, что одно их них, 1 – 3x

Представьте, что мы решаем уравнение, в которое входят три модуля от линейных выражений; например, |x – a| + |x – b| + |x – c| = m.

Первый модуль равен x – a при x ³ a и a – x при x b и x

Они образуют четыре промежутка. На каждом из них каждое из выражений под моду­лями сохраняет знак, следовательно, и уравнение в целом после раскрытия модулей имеет на каждом промежутке один и тот же вид. Итак, из 8 теоретически возможных вариан­тов раскрытия модулей нам оказалось достаточно только 4!

Так же можно решать любую задачу с несколькими модулями. Именно, числовая ось разбива­ется на промежутки знакопостоянства всех выражений, стоящих под модулями, а затем на каждом из них решается то уравнение или неравенство, в которое превращается данная задача на этом промежутке. В частности, если все выражения под модулями рациональны, то достаточно отметить на оси их корни, а также точки, где они не определены, то есть корни их знаменателей. Отмеченные точки и задают искомые промежутки знакопостоянства. Точно так же мы действуем при решении рациональных неравенств методом интервалов. И описанный нами метод решения задач с модулями имеет то же название.

Пример 1 . Решите уравнение .

Решение. Найдем нули функции , откуда . Решаем задачу на каждом интервале:

Итак, данное уравнение не имеет решений.

Пример 2 . Решите уравнение .

Решение. Найдем нули функции . Решаем задачу на каждом интервале:

1) (решений нет);

Пример 3 . Решите уравнение .

Решение. Выражения, стоящие под знаком абсолютной величины обращаются в ноль при . Соответственно нам нужно рассмотреть три случая:

2) - корень уравнения;

3) - корень данного уравнения.

Глава 2. Уравнения и неравенства, содержащие модули.

2.1 Решения уравнений с несколькими модулями, используя метод интервалов.

Пример 1.

Решите уравнение:

|х+2| = |х-1|+х-3

-(х+2) = -(х-1) + х-3

Х-2=-х+1+х-3

х=2 – не удовлетворяет

условию х

решений нет

2. Если -2≤х

х+2 = -(х-1)+х-3

удовлетворяет

условию -2

3. Если х≥1, то

Ответ: х=6

Пример 2.

Решите уравнение:

1) Находим нули подмодульных выражений

Нули подмодульных выражений разбивают числовую ось на несколько интервалов. Расставляем знаки подмодульных выражений на этих интервалах.

На каждом интервале раскрываем модули и решаем полученное уравнение. После нахождения корня проверяем, чтобы он принадлежал интервалу, на котором мы в данный момент работаем.

1. :

– подходит.

2. :

– не подходит.

3. :

подходит.

4. :

– не подходит. Ответ:

2.2 Решения неравенств с несколькими модулями, используя метод интервалов.

Пример 1.

Решите неравенство:

|х-1| + |х-3| 4


-(х-1) - (х-3) 4

2. Если 1≤х

х-1– (х-3) 4

24 – не верно

решений нет

3. Если х≥3, то

Ответ: хЄ (-∞;0) U (4;+∞)

Пример 2.

Решим неравенство

Решение. Точки и (корни выражений, стоящих под модулем) разбивают всю числовую ось на три интервала, на каждом из которых следует раскрыть модули.

1) При выполняется , и неравенство имеет вид , то есть . В этом случае ответ .

2) При выполняется , неравенство имеет вид , то есть . Это неравенство верно при любых значениях переменной , и, с учетом того, что мы решаем его на множестве , получаем ответ во втором случае .

3) При выполняется , неравенство преобразуется к , и решение в этом случае . Общее решение неравенства --- объединение трех полученных ответов.

Таким образом, для решения уравнений и неравенств, содержащих несколько модулей, удобно использовать метод интервалов. Для этого надо найти нули вех подмодульных функций, обозначить их на ОДЗ уравнения и неравенств.

Заключение

В последнее время в математике широко используются методы для упрощения решения задач, в частности метод интервала, позволяющий значительно ускорить расчеты. Поэтому исследование метода интервала для решения уравнений и неравенств с несколькими модулями актуально.

В процессе работы над темой «Решение уравнений и неравенств, содержащих неизвестную под знаком модуля методом интервала» я: изучила литературу по данному вопросу, познакомилась с алгебраическим и графическим подходом к решению уравнений и неравенств, содержащих неизвестную под знаком модуля, и пришла к выводу:

    В ряде случаев при решении уравнений с модулем, возможно, решать уравнения по правилам, а иногда удобнее воспользоваться методом интервала.

    При решении уравнений и неравенств, содержащих модуль, метод интервалов является более наглядным и сравнительно более простым.

В ходе написания исследовательской работы мною были раскрыты многие задачи, которые можно решить, используя метод интервала. Самой важной задачей является решение уравнений и неравенств с несколькими модулями.

В ходе проведённой мною работы по решению неравенств и уравнений с несколькими модулями, используя метод интервала, я обнаружила, что скорость решения задач увеличилась в два раза. Это позволяет значительно ускорить ход рабочего процесса и снизить временные затраты. Таким образом, моя гипотеза «если пользоваться методом интервалов для решения неравенств и уравнений с несколькими модулями, то можно значительно облегчить свою работу» подтвердилась. В процессе работы над исследованием я приобрела опыт при решении уравнений и неравенств с несколькими модулями. Думаю, что полученные мною знания позволят мне избежать ошибок при решении.

Литература

    http://padabum.com

  1. http://yukhym.com

    http://www.tutoronline.ru

    http://fizmat.by

    http://diffur.kemsu.ru

    http://solverbook.com

    Зеленский А.С., Панфилов. Решение уравнений и неравенств с модулем И.И. М.: Изд-во Факториал, 2009.- 112 с.

    Олехник С.Н. Потапов М.К.Уравнения и неравенства. Нестандартные методы решения. М.: Изд-во Факториал, 1997. - 219с.

    Севрюков П.Ф., Смоляков А.Н. Уравнения и неравенства с модулями и методика их решения. М.: Изд-во Просвещение 2005. - 112 с.

    Садовничий Ю.В. ЕГЭ. Практикум по математике. Решение уравнений и неравенств. Преобразование алгебраических выражений. М.: Изд-во Легион 2015 - 128 с.

    Шевкин А.В.Квадратные неравенства. Метод интервалов. М.: ООО «Русское слово – учебная книга», 2003. – 32 с.