Электромагнитное поле кратко и просто. Что такое электромагнитные поля (ЭМП)

1. Введение. Предмет изучения в валеологии.

3. Основные источники электромагнитного поля.

5. Методы защиты здоровья людей от электромагнитного воздействия.

6. Список использованных материалов и литературы.

1. Введение. Предмет изучения в валеологии.

1.1 Введение.

Валеология – от лат. «valeo»-«здравствую» - научная дисциплина, изучающая индивидуальное здоровье здорового человека. Принципиальное отличие валеологии от других дисциплин (в частности, от практической медицины) состоит именно в индивидуальном подходе к оценке здоровья каждого конкретного субъекта (без учета общих и усредненных по какому-либо коллективу данных).

Впервые валеология как научная дисциплина была официально зарегистрирована в 1980 году. Её основоположником стал российский ученый И. И. Брехман, работавший во Владивостокском Государственном Университете.

В настоящее время новая дисциплина активно развивается, накапливаются научные работы, активно ведутся практические исследования. Постепенно происходит переход от статуса научной дисциплины к статусу самостоятельной науки.

1.2 Предмет изучения в валеологии.

Предметом изучения в валеологии является индивидуальное здоровье здорового человека и влияющие на него факторы. Также валеология занимается систематизацией здорового образа жизни с учетом индивидуальности конкретного субъекта.

Наиболее распространённым на данный момент определением понятия «здоровье» является определение, предложенное экспертами Всемирной Организации Здравоохранения (ВОЗ):

Здоровье есть состояние физического, психического и социального благополучия.

Современная валеология выделяет следующие основные характеристики индивидуального здоровья:

1. Жизнь – наиболее сложное проявление существования материи, которое превосходит по сложности различные физико-химические и био- реакции.

2. Гомеостаз – квазистатичное состояние жизненных форм, характеризующееся изменчивостью на относительно больших временных отрезках и практической статичностью – на малых.

3. Адаптация – свойство жизненных форм приспосабливаться к изменяющимся условиям существования и перегрузкам. При нарушениях адаптации или слишком резких и радикальных изменениях условий возникает дезадаптация – стресс.

4. Фенотип – сочетание факторов окружающей среды, влияющих на развитие живого организма. Также термин «фенотип» характеризует совокупность особенностей развития и физиологии организма.

5. Генотип – сочетание наследственных факторов, влияющих на развитие живого организма, являющихся сочетанием генетического материала родителей. При передаче от родителей деформированных генов возникают наследственные патологии.

6. Образ жизни – совокупность поведенческих стереотипов и норм, характеризующих конкретный организм.

        Здоровье (согласно определению ВОЗ).

2. Электромагнитное поле, его виды, характеристики и классификация.

2.1 Основные определения. Виды электромагнитного поля.

Электромагнитное поле – это особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами.

Электрическое поле – создается электрическими зарядами и заряженными частицами в пространстве. На рисунке представлена картина силовых линий (воображаемых линий, используемых для наглядного представления полей) электрического поля для двух покоящихся заряженных частиц:

Магнитное поле – создается при движении электрических зарядов по проводнику. Картина силовых линий поля для одиночного проводника представлена на рисунке:

Физической причиной существования электромагнитного поля является то, что изменяющееся во времени электрическое поле возбуждает магнитное поле, а изменяющееся магнитное поле – вихревое электрическое поле. Непрерывно изменяясь, обе компоненты поддерживают существование электромагнитного поля. Поле неподвижной или равномерно движущейся частицы неразрывно связано с носителем (заряженной частицей).

Однако при ускоренном движении носителей электромагнитное поле «срывается» с них и существует в окружающей среде независимо, в виде электромагнитной волны, не исчезая с устранением носителя (например, радиоволны не исчезают при исчезновении тока (перемещения носителей – электронов) в излучающей их антенне).

2.2 Основные характеристики электромагнитного поля.

Электрическое поле характеризуется напряженностью электрического поля (обозначение «E», размерность СИ – В/м, вектор). Магнитное поле характеризуется напряженностью магнитного поля (обозначение «H», размерность СИ – А/м, вектор). Измерению обычно подвергается модуль (длина) вектора.

Электромагнитные волны характеризуются длиной волны (обозначение «(», размерность СИ - м), излучающий их источник – частотой (обозначение – «(», размерность СИ - Гц). На рисунке Е – вектор напряженности электрического поля, H – вектор напряженности магнитного поля.

При частотах 3 – 300 Гц в качестве характеристики магнитного поля может также использоваться понятие магнитной индукции (обозначение «B», размерность СИ - Тл).

2.3 Классификация электромагнитных полей.

Наиболее применяемой является так называемая «зональная» классификация электромагнитных полей по степени удаленности от источника/носителя.

По этой классификации электромагнитное поле подразделяется на «ближнюю» и «дальнюю» зоны. «Ближняя» зона (иногда называемая зоной индукции) простирается до расстояния от источника, равного 0-3(,де (- длина порождаемой полем электромагнитной волны. При этом напряженность поля быстро убывает (пропорционально квадрату или кубу расстояния до источника). В этой зоне порождаемая электромагнитная волна еще не полностью сформирована.

«Дальняя» зона – это зона сформировавшейся электромагнитной волны. Здесь напряженность поля убывает обратно пропорционально расстоянию до источника. В этой зоне справедливо экспериментально определенное соотношение между напряженностями электрического и магнитного полей:

где 377 – константа, волновое сопротивление вакуума, Ом.

Электромагнитные волны принято классифицировать по частотам:

|Наименование |Границы |Наименование |Границы |

|частотного |диапазона |волнового |диапазона |

|диапазона | |диапазона | |

|Крайние низкие, | Гц |Декамегаметровые | Мм |

|Сверхнизкие, СНЧ | Гц |Мегаметровые | Мм |

|Инфранизкие, ИНЧ | Кгц |Гектокилометровые | |

|Очень низкие, ОНЧ | Кгц |Мириаметровые | км |

|Низкие частоты, НЧ| Кгц|Километровые | км |

|Средние, СЧ | МГц |Гектометровые | км |

|Высокие, ВЧ | МГц |Декаметровые | м |

|Очень высокие, ОВЧ| МГц|Метровые | м |

|Ультравысокие, УВЧ| ГГц |Дециметровые | м |

|Сверхвысокие, СВЧ | ГГц |Сантиметровые | см |

|Крайне высокие, | ГГц|Миллиметровые | мм |

|Гипервысокие, ГВЧ | |Децимиллиметровые | мм |

Измеряют обычно только напряженность электрического поля E. При частотах выше 300 МГц иногда измеряется плотность потока энергии волны, или вектор Пойтинга (обозначение «S», размерность СИ – Вт/м2).

3.Основные источники электромагнитного поля.

В качестве основных источников электромагнитного поля можно выделить:

Линии электропередач.

Электропроводка (внутри зданий и сооружений).

Бытовые электроприборы.

Персональные компьютеры.

Теле- и радиопередающие станции.

Спутниковая и сотовая связь (приборы, ретрансляторы).

Электротранспорт.

Радарные установки.

3.1 Линии электропередач (ЛЭП).

Провода работающей линии электропередач создают в прилегающем пространстве (на расстояниях порядка десятков метров от провода) электромагнитное поле промышленной частоты (50 Гц). Причем напряженность поля вблизи линии может изменяться в широких пределах, в зависимости от ее электрической нагрузки. Стандартами установлены границы санитарно-защитных зон вблизи ЛЭП (согласно СН 2971-84):

|Рабочее напряжение |330 и ниже |500 |750 |1150 |

|ЛЭП, кВ | | | | |

|Размер |20 |30 |40 |55 |

|санитарно-защитной | | | | |

|зоны, м | | | | |

(фактически границы санитарно-защитной зоны устанавливаются по наиболее удаленной от проводов граничной линии максимальной напряженности электрического поля, равной 1 кВ/м).

3.2 Электропроводка.

К электропроводке относятся:кабели электропитания систем жизнеобеспечения зданий, токораспределительные провода, а также разветвительные щиты, силовые ящики и трансформаторы. Электропроводка является основным источником электромагнитного поля промышленной частоты в жилых помещениях. При этом уровень напряженности электрического поля, излучаемого источником, зачастую относительно невысок (не превышает 500 В/м).

3.3 Бытовые электроприборы.

Источниками электромагнитных полей являются все бытовые приборы, работающие с использованием электрического тока. При этом уровень излучения изменяется в широчайших пределах в зависимости от модели, устройства прибора и конкретного режима работы. Также уровень излучения сильно зависит от потребляемой мощности прибора – чем выше мощность, тем выше уровень электромагнитного поля при работе прибора. Напряженность электрического поля вблизи электробытовых приборов не превышает десятков В/м.

В нижеприведенной таблице представлены предельно допустимые уровни магнитной индукции для наиболее мощных источников магнитного поля среди бытовых электроприборов:

|Прибор |Интервал предельно допустимых |

| |величин магнитной индукции, мкТл|

|Кофеварка | |

|Стиральная машина | |

|Утюг | |

|Пылесос | |

|Электроплита | |

|Лампа «дневного света» (люминесцентные лампы ЛТБ,| |

|Электродрель (электродвигатель | |

|мощностью Вт) | |

|Электромиксер (электродвигатель мощностью | |

| Вт) | |

|Телевизор | |

|Микроволновая печь (индукционная, СВЧ) | |

3.4 Персональные компьютеры.

Основным источником неблагоприятного воздействия на здоровье пользователя компьютера является средство визуального отображения (СВО) монитора. В большинстве современных мониторов СВО представляет собой электронно-лучевую трубку. В таблице перечислены основные факторы воздействия СВО на здоровье:

|Эргономические |Факторы воздействия электромагнитного |

| |поля электронно-лучевой трубки |

|Значительное снижение контрастности |Электромагнитное поле в частотном |

|воспроизводимого изображения в условиях |диапазоне МГц. |

|внешней подсветки экрана прямыми лучами | |

|света. | |

|Зеркальное отражение лучей света от |Электростатический заряд на поверхности |

|поверхности экрана (блики). |экрана монитора. |

|Мультипликационный характер |Ультрафиолетовое излучение (диапазон |

|воспроизведения изображения |длин волн нм). |

|(высокочастотное непрерывное обновление | |

|Дискретный характер изображения |Инфракрасное и рентгеновское |

|(подразделение на точки). |ионизирующие излучения. |

В дальнейшем в качестве главных факторов воздействия СВО на здоровье будем рассматривать только факторы воздействия электромагнитного поля электронно- лучевой трубки.

Кроме монитора и системного блока персональный компьютер может также включать в себя большое количество других устройств (таких, как принтеры, сканеры, сетевые фильтры и т.п.). Все эти устройства работают с применением электрического тока, а значит, являются источниками электромагнитного поля. Следующая таблица показывает электромагнитную обстановку вблизи компьютера (вклад монитора в данной таблице не учитывается, так как был рассмотрен ранее):

|Источник |Диапазон частот генерируемого |

| |электромагнитного поля |

|Системный блок в сборе. |. |

|Устройства ввода-вывода (принтеры, | Гц. |

|сканеры, дисководы и др.). | |

|Источники бесперебойного питания, |. |

|сетевые фильтры и стабилизаторы. | |

Электромагнитное поле персональных компьютеров имеет сложнейший волновой и спектральный состав и трудно поддается измерению и количественной оценке. Оно имеет магнитную, электростатическую и лучевую составляющие (в частности, электростатический потенциал сидящего перед монитором человека может колебаться от –3 до +5 В). Учитывая то условие, что персональные компьютеры сейчас активно используются во всех отраслях человеческой деятельности, их влияние на здоровье людей подлежит тщательнейшему изучению и контролю.

3.5 Теле- и радиопередающие станции.

На территории России в настоящее время размещается значительное количество радиотрансляционных станций и центров различной принадлежности.

Передающие станции и центры размещаются в специально отведенных для них зонах и могут занимать довольно большие территории (до 1000 га). По своей структуре они включают в себя одно или несколько технических зданий, где находятся радиопередатчики, и антенные поля, на которых располагаются до нескольких десятков антенно-фидерных систем (АФС). Каждая система включает в себя излучающую антенну и фидерную линию, подводящую транслируемый сигнал.

Электромагнитное поле, излучаемое антеннами радиотрансляционных центров, имеет сложный спектральный состав и индивидуальное распределение напряженностей в зависимости от конфигурации антенн, рельефа местности и архитектуры прилегающей застройки. Некоторые усредненные данные по различным видам радиотрансляционных центров представлены в таблице:

|Тип |Нормируемая |Нормируемая |Особенности. |

|радиотрансляционно|напряженность |напряженность | |

|го центра. |электрического |магнитного поля, | |

| |поля, В/м. |А/м. | |

|ДВ – радиостанции |630 |1,2 |Наибольшая напряженность |

|(частота | | |поля достигается на |

|КГц, | | |расстояниях менее 1 длины |

|мощности | | |волны от излучающей |

|передатчиков 300 –| | |антенны. |

|500 КВт). | | | |

|СВ – радиостанции |275 |<нет данных> |Вблизи антенны (на |

|(частота , | | |наблюдается некоторое |

|мощности | | |понижение напряженности |

|передатчиков 50 - | | |электрического поля. |

|200 КВт). | | | |

|КВ – радиостанции |44 |0,12 |Передатчики могут быть |

|(частота | | |расположены на |

|МГц, | | |густозастроенных |

|мощности | | |территориях, а также на |

|передатчиков 10 – | | |крышах жилых зданий. |

|100 КВт). | | | |

|Телевизионные |15 |<нет данных> |Передатчики обычно |

|радиотрансляционны| | |расположены на высотах |

|е центры (частоты | | |более 110 м над средним |

| МГц, | | |уровнем застройки. |

|мощности | | | |

|передатчиков 100 | | | |

|КВт – 1МВт и | | | |

|более). | | | |

3.6 Спутниковая и сотовая связь.

3.6.1 Спутниковая связь.

Системы спутниковой связи состоят из передающей станции на Земле и путников – ретрансляторов, находящихся на орбите. Передающие станции спутниковой связи излучают узконаправленный волновой пучок, плотность потока энергии в котором достигает сотен Вт/м. Системы спутниковой связи создают высокие напряженности электромагнитного поля на значительных расстояниях от антенн. Например, станция мощностью 225 кВт, работающая на частоте 2,38 ГГц, создает на расстоянии 100 км плотность потока энергии 2,8 Вт/м2. Рассеяние энергии относительно основного луча очень небольшое и происходит больше всего в районе непосредственного размещения антенны.

3.6.2 Сотовая связь.

Сотовая радиотелефония является сегодня одной из наиболее интенсивно развивающихся телекоммуникационных систем. Основными элементами системы сотовой связи являются базовые станции и мобильные радиотелефонные аппараты. Базовые станции поддерживают радиосвязь с мобильными аппаратами, вследствие чего они являются источниками электромагнитного поля. В работе системы применяется принцип деления территории покрытия на зоны, или так называемые «соты», радиусом км. В нижеследующей таблице представлены основные характеристики действующих в России систем сотовой связи:

|Наименование|Рабочий |Рабочий |Максимальная |Максимальная |Радиус |

|системы, |диапазон |диапазон |излучаемая |излучаемая |покрытия |

|принцип |базовых |мобильных |мощность |мощность |единичной |

|передачи |станций, |аппаратов,|базовых |мобильных |базовой |

|информации. |МГц. |МГц. |станций, Вт. |аппаратов, |станции, |

| | | | |Вт. |км. |

|NMT450. | |

|Аналоговый. |5] |5] | | | |

|AMPS. |||100 |0,6 | |

|Аналоговый. | | | | | |

|DAMPS (IS – |||50 |0,2 | |

|136). | | | | | |

|Цифровой. | | | | | |

|CDMA. |||100 |0,6 | |

|Цифровой. | | | | | |

|GSM – 900. |||40 |0,25 | |

|Цифровой. | | | | | |

|GSM – 1800. | |

|Цифровой. |0] |5] | | | |

Интенсивность излучения базовой станции определяется нагрузкой, то есть наличием владельцев сотовых телефонов в зоне обслуживания конкретной базовой станции и их желанием воспользоваться телефоном для разговора, что, в свою очередь, коренным образом зависит от времени суток, места расположения станции, дня недели и других факторов. В ночные часы загрузка станций практически равна нулю. Интенсивность же излучения мобильных аппаратов зависит в значительной степени от состояния канала связи «мобильный радиотелефон – базовая станция» (чем больше расстояние от базовой станции, тем выше интенсивность излучения ппарата).

3.7 Электротранспорт.

Электротранспорт (троллейбусы, трамваи, поезда метрополитена и т.п.) является мощным источником электромагнитного поля в диапазоне частот Гц. При этом в роли главного излучателя в подавляющем большинстве случаев выступает тяговый электродвигатель (для троллейбусов и трамваев воздушные токоприёмники по напряженности излучаемого электрического поля соперничают с электродвигателем). В таблице приведены данные по измеренной величине магнитной индукции для некоторых видов электротранспорта:

|Вид транспорта и род |Среднее значение величины |Максимальное значение |

|потребляемого тока. |магнитной индукции, мкТл. |величины магнитной |

| | |индукции, мкТл. |

|Пригородные электропоезда.|20 |75 |

|Электротранспорт с |29 |110 |

|приводом постоянного тока | | |

|(электрокары и т.п.). | | |

3.8 Радарные установки.

Радиолокационные и радарные установки имеют обычно антенны рефлекторного типа («тарелки») и излучают узконаправленный радиолуч.

Периодическое перемещение антенны в пространстве приводит к пространственной прерывистости излучения. Наблюдается также временная прерывистость излучения, обусловленная цикличностью работы радиолокатора на излучение. Они работают на частотах от 500 МГц до 15 ГГц, однако отдельные специальные установки могут работать на частотах до 100 ГГц и более. Вследствие особого характера излучения они могут создавать на местности зоны с высокой плотностью потока энергии (100 Вт/м2 и более).

4. Влияние электромагнитного поля на индивидуальное здоровье человека.

Человеческий организм всегда реагирует на внешнее электромагнитное поле. В силу различного волнового состава и других факторов электромагнитное поле различных источников действует на здоровье человека по-разному. Вследствие этого в данном разделе воздействие различных источников на здоровье будем рассматривать по отдельности. Однако резко диссонирующее с естественным электромагнитным фоном поле искусственных источников почти во всех случаях оказывает на здоровье находящихся в зоне его воздействия людей негативное влияние.

Широкие исследования влияния электромагнитных полей на здоровье были начаты в нашей стране в 60-е годы. Было установлено, что нервная система человека чувствительна к электромагнитному воздействию, а также что поле обладает так называемым информационным действием при воздействии на человека в интенсивностях ниже пороговой величины теплового эффекта (величина напряженности поля, при которой начинает проявляться его тепловое воздействие).

В нижеследующей таблице приведены наиболее распространенные жалобы на ухудшение состояния здоровья людей, находящихся в зоне воздействия поля различных источников. Последовательность и нумерация источников в таблице соответствуют их последовательности и нумерации, принятых в разделе 3:

|Источник |Наиболее распространенные жалобы. |

|электромагнитного | |

|1. Линии |Кратковременное облучение (порядка нескольких минут) способно|

|электропередач (ЛЭП). |привести к негативной реакции только у особо чувствительных |

| |людей или у больных некоторыми видами аллергических |

| |заболеваний. Продолжительное облучение обычно приводит к |

| |различным патологиям сердечно-сосудистой и нервной систем |

| |(из-за разбалансировки подсистемы нервной регуляции). При |

| |сверхдлительном (порядка 10-20 лет) непрерывном облучении |

| |возможно (по непроверенным данным) развитие некоторых |

| |онкологических заболеваний. |

|2. Внутренняя |На настоящее время данных о жалобах на ухудшение состояния |

|электропроводка зданий|здоровья, связанное непосредственно с работой внутренних |

|и сооружений. |электросетей не имеется. |

|3. Бытовые |Имеются непроверенные данные о жалобах на кожные, |

|электроприборы. |сердечно-сосудистые и нервные патологии при долговременном |

| |систематическом пользовании микроволновыми печами старых |

| |моделей (до 1995 года выпуска). Также имеются аналогичные |

| |данные относительно применения микроволновых печей всех |

| |моделей в производственных условиях (например, для разогрева |

| |пищи в кафе). Кроме микроволновых печей имеются данные о |

| |негативном влиянии на здоровье людей телевизоров, имеющих в |

| |качестве прибора визуализации электронно-лучевую трубку. |

На данном уроке, тема которого: «Электромагнитное поле», мы обсудим понятие «электромагнитное поле», особенности его проявления и параметры этого поля.

Мы разговариваем по мобильному телефону. Как передается сигнал? Как передается сигнал от космической станции, улетевшей к Марсу? В пустоте? Да, вещества может не быть, но и это не пустота, есть нечто другое, через что передается сигнал. Это нечто назвали электромагнитным полем. Это прямо не наблюдаемый, но реально существующий объект природы.

Если звуковой сигнал - это изменение параметров вещества, например воздуха (рис. 1), то радиосигнал - это изменения параметров ЭМ-поля.

Рис. 1. Распространение звуковой волны в воздухе

Слова «электрический» и «магнитный» нам понятны, мы уже изучили отдельно электрические явления (рис. 2) и магнитные явления (рис. 3), но почему тогда мы ведем речь об электромагнитном поле? Сегодня мы в этом разберемся.

Рис. 2. Электрическое поле

Рис. 3. Магнитное поле

Примеры электромагнитных явлений.

В микроволновке создаются сильные, а главное - очень быстро изменяющиеся электромагнитные поля, которые действуют на электрический заряд. А как мы знаем, в атомах и молекулах веществ содержится электрический заряд (рис. 4). Вот на него и действует электромагнитное поле, заставляя молекулы быстрее двигаться (рис. 5) - увеличивается температура и еда нагревается. Такую же природу имеют рентгеновские лучи, ультрафиолетовые лучи, видимый свет.

Рис. 4. Молекула воды является диполем

Рис. 5. Движение молекул, имеющих электрический заряд

В микроволновке электромагнитное поле сообщает веществу энергию, которая идет на нагревание, видимый свет сообщает рецепторам глаза энергию, которая идет на активацию рецептора (рис. 6), энергия ультрафиолетовых лучей идет на образование меланина в коже (появление загара, рис. 7), а энергия рентгеновских лучей заставляет чернеть пленку, на которой вы можем увидеть изображение своего скелета (рис. 8). Электромагнитное поле во всех этих случаях имеет разные параметры, поэтому и оказывает разное воздействие.

Рис. 6. Условная схема активации рецептора глаза энергией видимого света

Рис. 7. Загар кожи

Рис. 8. Почернение пленки при рентгене

Так что с электромагнитным полем мы сталкиваемся намного чаще, чем кажется, и уже давно привыкли к явлениям, которые с ним связаны.

Итак, нам известно, что электрическое поле возникает вокруг электрических зарядов (рис. 9). Здесь всё понятно.

Рис. 9. Электрическое поле вокруг электрического заряда

Если электрический заряд движется, то вокруг него, как мы изучали, возникает магнитное поле (рис. 10). Здесь уже возникает вопрос: движется электрический заряд, вокруг него есть электрическое поле, при чем здесь магнитное поле? Еще один вопрос: мы говорим «заряд движется». Но ведь движение относительно, и он может в одной системе отсчета двигаться, а в другой - покоиться (рис. 11). Значит, в одной системе отсчета магнитное поле будет существовать, а в другой нет? Но поле не должно существовать или не существовать в зависимости от выбора системы отсчета.

Рис. 10. Магнитное поле вокруг движущегося электрического заряда

Рис. 11. Относительность движения заряда

Дело в том, что есть единое электромагнитное поле, и источник у него единый - электрический заряд. Оно имеет две составляющие. Электрическое и магнитное поля - это отдельные проявления, отдельные компоненты единого электромагнитного поля, которые проявляются по-разному в разных системах отсчета (рис. 12).

Рис. 12. Проявления электромагнитного поля

Можно выбрать систему отсчета, в которой будет проявляться только электрическое поле, или только магнитное поле, или оба сразу. Однако нельзя выбрать систему отсчета, в которой и электрическая, и магнитная составляющая будет нулевой, то есть в которой электромагнитное поле перестанет существовать.

В зависимости от системы отсчета мы видим либо одну составляющую поля, либо другую, либо их вместе. Это как движение тела по окружности: если посмотреть на такое тело сверху, увидим движение по окружности (рис. 13), если со стороны - увидим колебания вдоль отрезка (рис. 14). В каждой проекции на ось координат круговое движение - это колебания.

Рис. 13. Движение тела по окружности

Рис. 14. Колебания тела вдоль отрезка

Рис. 15. Проекция круговых движений на ось координат

Другая аналогия - проецирование пирамиды на плоскость. Ее можно спроецировать в треугольник или квадрат. На плоскости это совершенно разные фигуры, но все это - пирамида, на которую смотрят с разных сторон. Но нет такого ракурса, при взгляде с которого пирамида исчезнет совсем. Она только будет выглядеть более похожей на квадрат или треугольник (рис. 16).

Рис. 16. Проекции пирамиды на плоскость

Рассмотрим проводник с током. В нем отрицательные заряды скомпенсированы положительными, электрическое поле вокруг него равно нулю (рис. 17). Магнитное поле не равно нулю (рис. 18), возникновение магнитного поля вокруг проводника с током мы рассматривали. Выберем систему отсчета, в которой электроны, образующие электрический ток, будут неподвижны. Но в этой системе отсчета относительно электронов будут двигаться положительно заряженные ионы проводника в обратную сторону: все равно возникает магнитное поле (рис. 18).

Рис. 17. Проводник с током, у которого электрическое поле равно нулю

Рис. 18. Магнитное поле вокруг проводника с током

Если бы электроны были в вакууме, в этой системе отсчета вокруг них возникало бы электрическое поле, ведь они не скомпенсированы положительными зарядами, однако магнитного поля не было бы (рис. 19).

Рис. 19. Электрическое поле вокруг электронов, находящихся в вакууме

Рассмотрим другой пример. Возьмем постоянный магнит. Вокруг него есть магнитное поле, но электрического нет. Действительно, ведь электрическое поле протонов и электронов компенсируется (рис. 20).

Рис. 20. Магнитное поле вокруг постоянного магнита

Возьмем систему отсчета, в которой магнит движется. Вокруг движущегося постоянного магнита возникнет вихревое электрическое поле (рис. 21). Как его выявить? Поместим на пути магнита металлическое кольцо (неподвижное в данной системе отсчета). В нем возникнет ток - это хорошо нам известное явление электромагнитной индукции: при изменении магнитного потока возникает электрическое поле, приводящее к движению зарядов, к появлению тока (рис. 22). В одной системе отсчета электрического поля нет, а в другой оно проявляется.

Рис. 21. Вихревое электрическое поле вокруг движущегося постоянного магнита

Рис. 22. Явление электромагнитной индукции

Магнитное поле постоянного магнита

В любом веществе электроны, которые вращаются вокруг ядра, можно представлять как маленький электрический ток, который протекает по окружности (рис. 23). Значит, вокруг него возникает магнитное поле. Если вещество не магнитится, значит, плоскости вращения электронов направлены произвольно и магнитные поля от отдельных электронов компенсируют друг друга, так как направлены хаотично.

Рис. 23. Представление вращения электронов вокруг ядра

В магнитных веществах как раз-таки плоскости вращения электронов ориентированы примерно одинаково (рис. 24). Поэтому магнитные поля от всех электронов складываются, и получается уже ненулевое магнитное поле в масштабе целого магнита.

Рис. 24. Вращение электронов в магнитных веществах

Вокруг постоянного магнита существует магнитное поле, а точнее магнитная составляющая электромагнитного поля (рис. 25). Можем ли мы найти такую систему отсчета, в которой магнитная составляющая обнуляется и магнит теряет свои свойства? Все-таки нет. И правда, электроны вращаются в одной плоскости (смотри рис. 24), в любой момент времени скорости электронов не направлены в одну и ту же сторону (рис. 26). Так что невозможно найти систему отсчета, где они все замрут и магнитное поле пропадет.

Рис. 25. Магнитное поле вокруг постоянного магнита

Таким образом, электрическое и магнитное поля - это разные проявления единого электромагнитного поля. Нельзя сказать, что в конкретной точке пространства есть только магнитное или только электрическое поле. Там может быть и одно, и другое. Все зависит от системы отсчета, из которой мы рассматриваем эту точку.

Почему же мы до этого говорили отдельно об электрическом и о магнитном полях? Во-первых, так сложилось исторически: люди давно знают о магните, люди давно наблюдали наэлектризованный о янтарь мех, и никто не догадывался, что эти явления имеют одну природу. А во-вторых, это удобная модель. В задачах, где нас не интересует взаимосвязь электрической и магнитной составляющих, их удобно рассматривать отдельно. Два покоящихся заряда в данной системе отсчета взаимодействуют через электрическое поле - мы применяем к ним закон Кулона, нас не интересует, что эти же электроны могут в какой-то системе отсчета двигаться и создавать магнитное поле, и мы успешно решаем задачу (рис. 27).

Рис. 27. Закон Кулона

Действие магнитного поля на движущийся заряд рассматривается в другой модели, и она тоже в рамках своей применимости отлично работает при решении ряда задач (рис. 28).

Рис. 28. Правило левой руки

Постараемся понять, как взаимосвязаны составляющие электромагнитного поля.

Стоит отметить, что точная связь достаточно сложна. Ее вывел британский физик Джеймс Максвелл. Он вывел знаменитые 4 уравнения Максвелла (рис. 29), которые изучаются в вузах и требуют знания высшей математики. Мы их изучать, конечно, не будем, но в нескольких простых словах разберемся, что они означают.

Рис. 29. Уравнения Максвелла

Опирался Максвелл на работы другого физика - Фарадея (рис. 30), который просто качественно описал все явления. Он делал рисунки (рис. 31), записи, которые очень помогли Максвеллу.

Рис. 31. Рисунки Майкла Фарадея из книги «Электричество» (1852)

Фарадей открыл явление электромагнитной индукции (рис. 32). Вспомним, в чем оно заключается. Переменное магнитное поле порождает ЭДС индукции в проводнике. Иными словами, переменное магнитное поле (да, в данном случае - не электрический заряд) порождает электрическое поле. Это электрическое поле является вихревым, то есть линии его замкнуты (рис. 33).

Рис. 32. Рисунки Майкла Фарадея к опыту

Рис. 33. Возникновение ЭДС индукции в проводнике

Кроме того, мы знаем, что магнитное поле порождается движущимся электрическим зарядом. Правильнее будет сказать, что оно порождается переменным электрическим полем. При движении заряда электрическое поле в каждой точке изменяется, и это изменение порождает магнитное поле (рис. 34).

Рис. 34. Возникновение магнитного поля

Можно заметить появление магнитного поля между обкладок конденсатора. Когда он заряжается или разряжается, между пластин возникает переменное электрическое поле, что в свою очередь порождает магнитное поле. В данном случае линии магнитного поля будут лежать в плоскости, перпендикулярной линиям электрического поля (рис. 35).

Рис. 35. Появление магнитного поля между обкладок конденсатора

А теперь посмотрим на уравнения Максвелла (рис. 29), ниже дана для ознакомления небольшая их расшифровка.

Значок - дивергенция - это математический оператор, он выделяет ту составляющую поля, которая имеет источник, то есть линии поля на чем-то начинаются и заканчиваются. Посмотрите на второе уравнение: эта составляющая магнитного поля равна нулю : линии магнитного поля ни на чем не начинаются и не заканчиваются, магнитного заряда не существует. Посмотрите на первое уравнение: такая составляющая электрического поля пропорциональна плотности заряда . Электрическое поле создается электрическим зарядом .

Наиболее интересны следующих два уравнения. Значок - ротор - это математический оператор, выделяющий вихревую составляющую поля. Третье уравнение означает, что вихревое электрическое поле создается изменяющимся во времени магнитным полем ( - это производная, которая, как вы знаете из математики, означает скорость изменения магнитного поля). То есть речь идет об электромагнитной индукции.

Четвертое уравнение показывает, если не обращать внимания на коэффициенты пропорциональности: вихревое магнитное поле создается изменяющимся электрическом полем , а также электрическим током ( - плотность тока). Речь идет о том, что мы хорошо знаем: магнитное поле создается движущимся электрическим зарядом и .

Как видите, переменное магнитное поле может порождать переменное электрическое, а переменное электрическое поле в свою очередь порождает переменное магнитное и так далее (рис. 36).

Рис. 36. Переменное магнитное поле может порождать переменное электрическое, и наоборот

В результате в пространстве может образовываться электромагнитная волна (рис. 37). Эти волны имеют разные проявления - это и радиоволны, и видимый свет, ультрафиолет и так далее. Об этом поговорим на следующих уроках.

Рис. 37. Электромагнитная волна

Список литературы

  1. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учрежде-ний. - М.: Дрофа, 2005.
  2. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. - М.: Просвещение, 2010.
  1. Интернет портал «studopedia.su» ()
  2. Интернет портал «worldofschool.ru» ()

Домашнее задание

  1. Можно ли обнаружить магнитное поле в системе отсчета, связанной с одним из равномерно движущихся электронов в потоке, который создается в кинескопе телевизора?
  2. Какое поле возникает вокруг электрона, движущегося в данной системе отсчета с постоянной скоростью?
  3. Какое поле можно обнаружить вокруг неподвижного янтаря, заряженного статическим электричеством? Вокруг движущегося? Ответы обоснуйте.

Научно-технический прогресс сопровождается резким увеличением мощности электромагнитных полей (ЭМП), созданных человеком, которые в отдель-ных случаях в сотни и тысячи раз выше уровня естественных полей.

Спектр электромагнитных колебаний включает волны длиной от 1000 км до 0,001 мкм и по частоте f от 3×10 2 до 3×10 20 Гц. Электромагнитное поле характеризуется совокупностью векторов электрических и магнитных со-ставляющих. Разные диапазоны электромагнитных волн имеют общую фи-зическую природу, но различаются энергией, характером распространения, поглощения, отражения и действием на среду, человека. Чем короче длина волны, тем больше энергии несет в себе квант.

Основными характеристиками ЭМП являются:

Напряженность электрического поля Е , В/м.

Напряженность магнитного поля Н , А/м.

Плотность потока энергии, переносимый электромагнитными волна-ми I , Вт/м 2 .

Связь между ними определяется зависимостью:

Связь энергии I и частоты f колебаний определяется как:

где: f = с/l, а с = 3 × 10 8 м/с (скорость распространения электромагнит-ных волн), h = 6,6 × 10 34 Вт/см 2 (постоянная Планка).

В пространстве. окружающем источник ЭМП выделяют 3 зоны (рис.9):

а) Ближняя зона (индукции), где нет распространения волны, нет переноса энергии, а следовательно электрическая и магнитная со-ставляющая ЭМП рассматриваются независимо. Граница зоны R < l/2p.

б) Промежуточная зона (дифракции), где волны накладываются друг на друга, образуя максимумы и стоячие волны. Границы зоны l/2p < R < 2pl. Основная характеристика зоны суммарная плотность потоков энергии волн.

в) Зона излучения (волновая) с границей R > 2pl. Есть распространение волны, следовательно характеристикой зоны излучения является плотность потока энергии, т.е. коли-чество энергии, падающей на единицу поверхности I (Вт/м 2).

Рис. 1.9 . Зоны существования электромагнитного поля

Электромагнитное поле по мере удаления от источников излучения затухает обратно пропорционально квадрату расстояний от источника. В зоне индукции напряженность электрического поля убывает обратно пропорционально расстоянию в третьей степени, а маг-нитного поля обратно пропорционально квадрату расстояния.

По характеру воздействия на организм человека ЭМП разделяют на 5 диапазонов:

Электромагнитные поля промышленной частоты (ЭМП ПЧ): f < 10 000 Гц.

Электромагнитные излучения радиочастотного диапазона (ЭМИ РЧ) f 10 000 Гц.

Электромагнитные поля радиочастотной части спектра разбиваются на четыре поддиапазона:

1) f от 10 000 Гц до 3 000 000 Гц (3 МГц);


2) f от 3 до 30 МГц;

3) f от 30 до 300 МГц;

4) f от 300 МГц до 300 000 МГЦ (300 ГГц).

Источниками электромагнитных полей промышленной частоты являются линии электропередач высокого напряжения, открытые распре-делительные устройства, все электрические сети и приборы, питающиеся переменным током 50 Гц. Опасность воздействия линий растет с увеличе-нием напряжения вследствие возрастания заряда, сосредоточенного на фазе. Напряженность электрического поля в районах прохождения высоко-вольтных линий электропередач может достигать нескольких тысяч вольт на метр. Волны этого диапазона сильно поглощаются почвой и на удале-нии 50-100 м от линии напряженность падает до нескольких десятков вольт на метр. При систематическом воздействии ЭП наблюдаются функцио-нальные нарушения в деятельности нервной и сердечно-сосудистой систе-мы. С возрастанием напряженности поля в организме наступают стойкие функциональные изменения в ЦНС . Наряду с биологическим действием электрического поля между человеком и металлическим предметом могут возникнуть разряды, обусловленные потенциалом тела, который достигает нескольких киловольт, если человек изолирован от Земли.

Допустимые уровни напряженности электрических полей на рабочих местах устанавливаются ГОСТом 12.1.002-84 «Электрические поля промышленной частоты». Предельно до-пустимый уровень напряженности ЭМП ПЧ устанавливается в 25 кВ/м. Допустимое время пребывания в таком поле составляет 10 мин. Пребыва-ние в ЭМП ПЧ напряженностью более 25 кВ/м без средств защиты не допускает-ся, а в ЭМП ПЧ напряженностью до 5 кВ/м пребывание допускается в течение всего рабочего дня. Для расчета допустимого времени пребывания в ЭП при напряженно-сти свыше 5 до 20 кВ/м включительно используется формула Т = (50/Е ) - 2, где: Т - допустимое время пребывания в ЭМП ПЧ, (час); Е - напряженность электрической составляющей ЭМП ПЧ, (кВ/м).

Санитарные нормы СН 2.2.4.723-98 регламентируют ПДУ магнитной составляющей ЭМП ПЧ на рабочих местах. Напряженность магнитной составляющей Н не должна превышать 80 А/м при 8-ми часовом пребывании в условиях этого поля.

Напряженность электрической составляющей ЭМП ПЧ в жилой застройке и квартирах регламентируется СанПиН 2971-84 «Санитарными нормами и правилами защиты населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты». Согласно этому документу, величина Е не должна превышать 0,5 кВ/м внутри жилых помещений и 1 кВ/м на территории городской застройки. Нормы ПДУ магнитной составляющей ЭМП ПЧ для жилой и городской среды в настоящее время не разработаны.

ЭМИ РЧ используются для термообработки, плавки металлов, в радио-связи, медицине. Источниками ЭМП в производственных помещениях яв-ляются ламповые генераторы, в радиотехнических установках - антенные системы, в СВЧ-печах - утечки энергии при нарушении экрана рабочей камеры.

ЭМИ РЧ придействии на организм вызывает поляризацию атомов и мо-лекул тканей, ориентацию полярных молекул, появление в тканях ионных токов, нагрев тканей за счет поглощения энергии ЭМП. Это нарушает структуру электрических потенциалов, циркуляцию жидкости в клетках ор-ганизма, биохимическую активность молекул, состав крови.

Биологический эффектЭМИ РЧ зависит от его параметров: длины вол-ны, интенсивности и режима излучения (импульсный, непрерывный, пре-рывистый), от площади облучаемой поверхности, продолжительности об-лучения. Электромагнитная энергия частично поглощается тканями и пре-вращается в тепловую, происходит локальный нагрев тканей, клеток. ЭМИ РЧ ока-зывает неблагоприятное действие на ЦНС, вызывает нарушения в нервно-эндокринной регуляции, изменения в крови, помутнение хрусталика глаз (исключительно 4 поддиапазон), нарушения обменных процессов.

Гигиеническое нормирование ЭМИ РЧ осуществляется со-гласно ГОСТ 12.1.006-84 «Электромагнитные поля радиочастот. Допусти-мые уровни на рабочих местах и требования к проведению контроля». Уровни ЭМП на рабочих местах контролируются измерением в диапа-зоне частот 60 кГц-300 МГц напряженности электрической и магнитных составляющих, а в диапазоне частот 300 МГц-300 ГГц плотности потока энергии (ППЭ) ЭМП с учетом времени пребывания в зоне облучения.

Для ЭМП радиочастот от 10 кГц до 300 МГц регламентируется напряженность электрической и магнитной составляющей поля в зависимости от диапазо-на частот: чем выше частоты, тем меньше допускаемая величина напря-женности. Например, электрическая составляющая ЭМП для частот 10 кГц - 3МГц составляет 50 В/м, а для частот 50 МГц - 300 МГц только 5 В/м. В диапазоне частоты 300 МГц - 300 ГГц регламентируется плотность потока энергии излучения и создаваемая им энергетическая нагрузка, т.е. поток энергии, проходящий через единицу облучаемой поверхности за время действия. Максимальное значение плотности потока энергии не должно превышать 1000 мкВт/см 2 . Время пребывания в таком поле не должно превышать 20 мин. Пребывание в поле в ППЭ равном 25 мкВт/см 2 допускается в течение 8-ми часовой рабочей смены.

В городской и бытовой среде нормирование ЭМИ РЧ осуществляется согласно СН 2.2.4/2.1.8-055-96 «Электромагнитные излучения радиочастотного диапазона». В жилых помещениях ППЭ ЭМИ РЧ не должна превышать 10 мкВт/см 2 .

В машиностроении широко используется магнитно-импульсная и электрогидравлическая обработка металлов низкочастотным импульсным током 5-10 кГц (резка и обжатие трубчатых заготовок, штамповка, вырубка отверстий, очистка отливок). Источниками импульсного магнитного по-ля на рабочих местах являются открытые рабочие индукторы, электроды, тоководящие шины. Импульсное магнитное поле оказывает влияние на обмен веществ в тканях головного мозга, на эндокринные системы регуляции.

Электростатическое поле (ЭСП) - это поле неподвижных электриче-ских зарядов, взаимодействующих между собой. ЭСП характеризуется на-пряженностью Е , то есть отношением силы, действующей в поле на то-чечный заряд, к величине этого заряда. Напряженность ЭСП измеряется в В/м. ЭСП возникают в энергетических установках, в электротехнологиче-ских процессах. ЭСП используется в электрогазоочистке, при нанесении лакокрасочных покрытий. ЭСП оказывает негативное влияние на ЦНС; у работающих в зоне ЭСП возникает головная боль, нарушение сна и др. В источниках ЭСП, помимо биологического воздействия, определенную опасность представляет аэроионы. Источником аэроионов является корона, возникающая на проводах при напряженности Е >50 кВ/м.

Допустимые уровни напряженности ЭСП установлены ГОСТ 12.1.045-84 «Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля». Допустимый уровень напряженности ЭСП устанавливается в зависимости от времени пребывания на рабочих местах. ПДУ напряженности ЭСП устанавливается равный 60 кВ/м в течение 1 часа. При напряженности ЭСП менее 20 кВ/м время пре-бывания в ЭСП не регламентируется.

Основными характеристиками лазерного излучения являются: длина волны l, (мкм), интенсивность излучения, определяемая по величине энергии или мощно-сти выходного пучка и выражаемая в джоулях (Дж) или ваттах (Вт): дли-тельность импульса (сек), частота повторения импульса (Гц). Глав-ными критериями опасности лазера являются его мощность, длина волны, длительность импульса и экспозиция облучения.

По степени опасности лазеры разделены на 4 класса: 1 - выходное излучение не опасно для глаз, 2 - опасно для глаз прямое и зеркально от-раженное излучение, 3 - опасно для глаз диффузно отраженное излуче-ние, 4 - опасно для кожи диффузно отраженное излучение.

Класс лазера по степени опасности генерируемого излучения опреде-ляется предприятием-изготовителем. При работе с лазерами персонал под-вергается воздействию вредных и опасных производственных факторов.

К группе физических вредных и опасных факторов при работе лазеров относят:

Лазерное излучение (прямое, рассеянное, зеркальное или диффузно отраженное),

Повышенное значение напряжения электропитания лазеров,

Запыленность воздуха рабочей зоны продуктами взаимодействия ла-зерного излучения с мишенью, повышенный уровень ультрафиолетовой и инфракрасной радиации,

Ионизирующие и электромагнитные излучения в рабочей зоне, по-вышенная яркость света от импульсных ламп накачки и взрывоопасность систем накачки лазеров.

На персонал, обслуживающий лазеры, действуют химически опасные и вредные факторы, как-то: озон, окислы азота и другие газы, обусловлен-ные характером производственного процесса.

Действие лазерного излучения на организм зависит от параметров излучения (мощности, длины волны, длительности импульса, частоты следования им-пульсов, времени облучения и площади облучаемой поверхности), локали-зация воздействия и особенности облучаемого объекта. Лазерное излуче-ние вызывает в облучаемых тканях органические изменения (первичные эффекты) и специфические изменения в самом организме (вторичные эф-фекты). При действии излучения происходит быстрый нагрев облучаемых тканей, т.е. термический ожог. В результате быстрого нагрева до высоких температур происходит резкое повышение давления в облучаемых тканях, что приводит к их механическому повреждению. Действия лазерного излу-чения на организм могут вызвать функциональные нарушения и даже пол-ную потерю зрения. Характер поврежденной кожи варьирует от легких до разной степени ожогов, вплоть до некрозов. Помимо изменений тканей, ла-зерное излучение вызывает функциональные сдвиги в организме.

Предельно допустимые уровни облучения регламентируются «Сани-тарными нормами и правилами устройства и эксплуатации лазеров» 2392-81. Предельно допустимые уровни облучения дифференцированы с учетом режима работы лазеров. Для каждого режима работы, участка оптического диапазона величина ПДУ определяется по специальным таблицам. Дози-метрический контроль лазерного излучения осуществляют в соответствии с ГОСТ 12.1.031-81. При контроле измеряются плотность мощности непре-рывного излучения, плотность энергии импульсного и импульсно-модулированного излучения и другие параметры.

Ультрафиолетовое излучение - это невидимое глазом электромаг-нитное излучение, занимающее промежуточное положение между светом и рентгеновским излучением. Биологически активную часть УФ-излучения делят на три части: А с длиной волны 400-315 нм, В с длиной волны 315-280 нм и С 280-200 нм. УФ-лучи обладают способностью вызывать фото-электрический эффект, люминесценцию, развитие фотохимических реак-ций, а также обладают значительной биологической активностью.

УФ-излучения характеризуется бактерицидными и эритемными свойствами. Мощность эритемного излучения - это величина, характери-зующая полезное воздействие УФ-излучений на человека. За единицу эритемного излучения принят Эр, соответствующий мощности в 1 Вт для дли-ны волны 297 нм. Единица эритемной освещенности (облученности) Эр на квадратный метр (Эр/м 2) или Вт/м 2 . Доза облучения Нэр измеря-ется в Эр×ч/м 2 , т.е. это облучение поверхности за определенное время. Бактерицидность потока УФ-излучения измеряется в бакт. Соответственно бактерицидная облученность-бакт на м 2 , а доза бакт в час на м 2 (бк×ч/м 2).

Источниками УФ-излучения на производстве являются электрическая дуга, автогенное пламя, ртутно-кварцевые горелки и другие температурные излучатели.

Естественные УФ-лучи оказывают положительное влияние на организм. При недос-татке солнечного света возникает "световое голодание", авитаминоз Д, ос-лабление иммунитета, функциональные расстройства нервной системы. Вместе с тем УФ-излучение от производственных источников может стать причиной острых и хронических профессиональных заболеваний глаз. Острое поражение глаз называется электроофтальмия. Нередко обнаружи-вается эритема кожи лица и век. К хроническим поражениям следует отне-сти хронический коньюнктивит, катаракту хрусталика, кожные поражения (дерматиты, отеки с образованием пузырей).

Нормирование УФ-излучения осуществляется согласно «Санитарные нормы ультрафиолетового излучения в производственных помещениях» 4557-88. При нормирова-нии устанавливается интенсивность излучения в Вт/м 2 . При поверхности облучения 0,2 м 2 в течение до 5 мин с перерывом 30 мин при общей про-должительности до 60 мин норма для УФ-А 50 Вт/ м 2 , для УФ-В 0,05 Вт/ м 2 и для УФ-С 0,01 Вт/ м 2 . При общей продолжительности облуче-ния 50% рабочей смены и однократном облучении 5 мин норма для УФ-А 10 Вт/ м 2 , для УФ-В 0,01 Вт/ м 2 при площади облучения 0,1 м 2 , а об-лучение УФ-С не допускается.

Подробности Категория: Электричество и магнетизм Опубликовано 05.06.2015 20:46 Просмотров: 11962

Переменные электрическое и магнитное поля при определённых условиях могут порождать друг друга. Они образуют электромагнитное поле, которое вовсе не является их совокупностью. Это единое целое, в котором эти два поля не могут существовать друг без друга.

Из истории

Опыт датского учёного Ханса Кристиана Эрстеда, проведенный в 1821 г., показал, что электрический ток порождает магнитное поле . В свою очередь, изменяющееся магнитное поле способно порождать электрический ток . Это доказал английский физик Майкл Фарадей , открывший в 1831 г. явление электромагнитной индукции. Он же является автором термина «электромагнитное поле».

В те времена в физике была принята концепция дальнодействия Ньютона . Считалось, что все тела действуют друг на друга через пустоту с бесконечно большой скоростью (практически мгновенно) и на любом расстоянии. Предполагалось, что и электрические заряды взаимодействуют подобным образом. Фарадей же считал, что пустоты в природе не существует, а взаимодействие происходит с конечной скоростью через некую материальную среду. Этой средой для электрических зарядов является электромагнитное поле . И оно распространяется со скоростью, равной скорости света .

Теория Максвелла

Объединив результаты предыдущих исследований, английский физик Джеймс Клерк Максвелл в 1864 г. создал теорию электромагнитного поля . Согласно ей, изменяющееся магнитное поле порождает изменяющееся электрическое поле, а переменное электрическое поле порождает переменное магнитное поле. Конечно, вначале одно из полей создаётся источником зарядов или токов. Но в дальнейшем эти поля уже могут существовать независимо от таких источников, вызывая появление друг друга. То есть, электрическое и магнитное поля являются составляющими единого электромагнитного поля . И всякое изменение одного из них вызывает появление другого. Эта гипотеза составляет основу теории Максвелла. Электрическое поле, порождаемое магнитным полем, является вихревым. Его силовые линии замкнуты.

Эта теория феноменологическая. Это означает, что она создана на основе предположений и наблюдений, и не рассматривает причину, вызывающую возникновение электрических и магнитных полей.

Свойства электромагнитного поля

Электромагнитное поле - это совокупность электрического и магнитного полей, поэтому в каждой точке своего пространства оно описывается двумя основными величинами: напряжённостью электрического поля Е и индукцией магнитного поля В .

Так как электромагнитное поле представляет собой процесс превращения электрического поля в магнитное, а затем магнитного в электрическое, то его состояние постоянно меняется. Распространяясь в пространстве и времени, оно образует электромагнитные волны. В зависимости от частоты и длины эти волны разделяют на радиоволны, терагерцовое излучение, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское и гамма-излучение .

Векторы напряжённости и индукции электромагнитного поля взаимно перпендикулярны, а плоскость в которой они лежат, перпендикулярна направлению распространения волны.

В теории дальнодействия скорость распространения электромагнитных волн считалась бесконечной большой. Однако Максвелл доказал, что это не так. В веществе электромагнитные волны распространяются с конечной скоростью, которая зависит от диэлектрической и магнитной проницаемости вещества. Поэтому Теорию Максвелла называют теорией близкодействия.

Экспериментально теорию Максвелла подтвердил в 1888 г. немецкий физик Генрих Рудольф Герц. Он доказал, что электромагнитные волны существуют. Более того, он измерил скорость распространения электромагнитных волн в вакууме, которая оказалась равной скорости света.

В интегральной форме этот закон выглядит так:

Закон Гаусса для магнитного поля

Поток магнитной индукции через замкнутую поверхность равен нулю .

Физический смысл этого закона в том, что в природе не существует магнитных зарядов. Полюса магнита разделить невозможно. Силовые линии магнитного поля замкнуты.

Закон индукции Фарадея

Изменение магнитной индукции вызывает появление вихревого электрического поля.

,

Теорема о циркуляции магнитного поля

В этой теореме описаны источники магнитного пόля , а также сами поля, создаваемые ими.

Электрический ток и изменение электрической индукции порождают вихревое магнитное поле .

,

,

Е – напряжённость электрического поля;

Н – напряжённость магнитного поля;

В – магнитная индукция. Это векторная величина, показывающая, с какой силой магнитное поле действует на заряд величиной q, движущийся со скоростью v;

D – электрическая индукция, или электрическое смещение. Представляет собой векторную величину, равную сумме вектора напряжённости и вектора поляризации. Поляризация вызывается смещением электрических зарядов под действием внешнего электрического поля относительно их положения, когда такое поле отсутствует.

Δ – оператор Набла. Действие этого оператора на конкретное поле называют ротором этого поля.

Δ х Е = rot E

ρ - плотность стороннего электрического заряда;

j - плотность тока - величина, показывающая силу тока, протекающего через единицу площади;

с – скорость света в вакууме.

Изучением электромагнитного поля занимается наука, называемая электродинамикой . Она рассматривает его взаимодействие с телами, имеющими электрический заряд. Такое взаимодействие называется электромагнитным . Классическая электродинамика описывает только непрерывные свойства электромагнитного поля с помощью уравнений Максвелла. Современная квантовая электродинамика считает, что электромагнитное поле обладает также и дискретными (прерывными) свойствами. И такое электромагнитное взаимодействие происходит с помощью неделимых частиц-квантов, не имеющих массы и заряда. Квант электромагнитного поля называют фотоном .

Электромагнитное поле вокруг нас

Электромагнитное поле образуется вокруг любого проводника с переменным током. Источниками электромагнитных полей являются линии электропередач, электродвигатели, трансформаторы, городской электрический транспорт, железнодорожный транспорт, электрическая и электронная бытовая техника – телевизоры, компьютеры, холодильники, утюги, пылесосы, радиотелефоны, мобильные телефоны, электробритвы - словом, всё, что связано с потреблением или передачей электроэнергии. Мощные источники электромагнитных полей – телевизионные передатчики, антенны станций сотовой телефонной связи, радиолокационные станции, СВЧ-печи и др. А так как таких устройств вокруг нас довольно много, то электромагнитные поля окружают нас повсюду. Эти поля воздействуют на окружающую среду и человека. Нельзя сказать, что это влияние всегда негативное. Электрические и магнитные поля существовали вокруг человека давно, но мощность их излучения ещё несколько десятилетий назад был в сотни раз ниже нынешнего.

До определённого уровня электромагнитное излучение может быть безопасным для человека. Так, в медицине с помощью электромагнитного излучения низкой интенсивности заживляют ткани, устраняют воспалительные процессы, оказывают обезболивающее действие. Аппараты УВЧ снимают спазмы гладкой мускулатуры кишечника и желудка, улучшают обменные процессы в клетках организма, снижая тонус капилляров, понижают артериальное давление.

Но сильные электромагнитные поля вызывают сбои в работе сердечно-сосудистой, имунной, эндокринной и нервной систем человека, могут вызывать бессонницу, головные боли, стрессы. Опасность в том, что их воздействие практически незаметно для человека, а нарушения возникают постепенно.

Каким образом защититься от окружающего нас электромагнитного излучения? Полностью это сделать невозможно, поэтому нужно постараться свести к минимуму его воздействие. Прежде всего нужно расположить бытовые приборы таким образом, чтобы они находились подальше от тех мест, где мы находимся чаще всего. Например, не нужно садиться слишком близко к телевизору. Ведь чем дальше расстояние от источника электромагнитного поля, тем слабее оно становится. Очень часто мы оставляем прибор, включенным в розетку. Но электромагнитное поле исчезает, лишь когда прибор отключается от электрической сети.

Влияют на здоровье человека и естественные электромагнитные поля – космическое излучение, магнитное поле Земли.

Что такое электромагнитное поле, как оно влияет на здоровье человека и зачем его измерять — вы узнаете из этой статьи. Продолжая знакомить вас с ассортиментом нашего магазина, расскажем о полезных приборах — индикаторах напряженности электромагнитного поля (ЭМП). Они могут применяться как на предприятиях, так и в быту.

Что такое электромагнитное поле?

Современный мир немыслим без бытовой техники, мобильных телефонов, электричества, трамваев и троллейбусов, телевизоров и компьютеров. Мы привыкли к ним и совершенно не задумываемся о том, что любой электрический прибор создает вокруг себя электромагнитное поле. Оно невидимо, но влияет на любые живые организмы, в том числе и на человека.

Электромагнитное поле — особая форма материи, возникающая при взаимодействии движущихся частиц с электрическими зарядами. Электрическое и магнитное поле взаимосвязаны друг с другом и могут порождать одно другое — именно поэтому, как правило, о них говорят вместе как об одном, электромагнитном поле.

К основным источникам электромагнитных полей относят:

— линии электропередач;
— трансформаторные подстанции;
— электропроводку, телекоммуникации, кабели телевидения и интернета;
— вышки сотовой связи, радио- и телевышки, усилители, антенны сотовых и спутниковых телефонов, Wi-Fi роутеры;
— компьютеры, телевизоры, дисплеи;
— бытовые электроприборы;
— индукционные и микроволновые (СВЧ) печи;
— электротранспорт;
— радары.

Влияние электромагнитных полей на здоровье человека

Электромагнитные поля влияют на любые биологические организмы — на растения, насекомых, животных, людей. Ученые, изучающие влияние ЭМП на человека, пришли к выводу, что длительное и регулярное воздействие электромагнитных полей может привести к:
— повышенной утомляемости, нарушениям сна, головным болям, снижению давления, снижению частоты пульса;
— нарушениям в иммунной, нервной, эндокринной, половой, гормональной, сердечно-сосудистой системах;
— развитию онкологических заболеваний;
— развитию заболеваний центральной нервной системы;
— аллергическим реакциям.

Защита от ЭМП

Существуют санитарные нормы, устанавливающие максимально допустимые уровни напряженности электромагнитного поля в зависимости от времени нахождения в опасной зоне — для жилых помещений, рабочих мест, мест возле источников сильного поля. Если нет возможности уменьшить излучение конструкционно, например, от линии электромагнитных передач (ЭМП) или сотовой вышки, то разрабатываются служебные инструкции, средства защиты для работающего персонала, санитарно-карантинные зоны ограниченного доступа.

Различные инструкции регламентируют время пребывания человека в опасной зоне. Экранирующие сетки, пленки, остекление, костюмы из металлизированной ткани на основе полимерных волокон способны снизить интенсивность электромагнитного излучения в тысячи раз. По требованию ГОСТа зоны излучения ЭМП ограждаются и снабжаются предупреждающими табличками «Не входить, опасно!» и знаком опасности электромагнитного поля.

Специальные службы с помощью приборов постоянно контролируют уровень напряженности ЭМП на рабочих местах и в жилых помещениях. Можно и самостоятельно позаботиться о своем здоровье, купив портативный прибор «Импульс» или комплект «Импульс» + нитрат-тестер «SOEKS» .

Зачем нужны бытовые приборы измерения напряженности электромагнитного поля?

Электромагнитное поле негативно влияет на здоровье человека, поэтому полезно знать, какие места, в которых вы бываете (дома, в офисе, на приусадебном участке, в гараже) могут представлять опасность. Вы должны понимать, что повышенный электромагнитный фон могут создавать не только ваши электрические приборы, телефоны, телевизоры и компьютеры, но и неисправная проводка, электроприборы соседей, промышленные объекты, расположенные неподалеку.

Специалисты выяснили, что кратковременное воздействие ЭМП на человека практически безвредно, но длительное нахождение в зоне с повышенным электромагнитным фоном опасно. Вот такие зоны и можно обнаружить с помощью приборов типа «Импульс». Так, вы сможете проверить места, где проводите больше всего времени; детскую и свою спальню; рабочий кабинет. В прибор занесены значения, установленные нормативными документами, так что вы сразу сможете оценить степень опасности для вас и ваших близких. Возможно, что после обследования вы решите отодвинуть компьютер от кровати, избавиться от сотового телефона с усиленной антенной, поменять старую СВЧ-печь на новую, заменить изоляцию дверцы холодильника с режимом No Frost.