Мировые природные ресурсы — Гипермаркет знаний. Добыча ресурсов в космосе начнется очень скоро Климатические ресурсы страны лидеры

Астероиды – это начальный материал, оставшийся после образования Солнечной Системы. Они распространены везде: некоторые пролетают совсем близко к Солнцу, другие обнаружены неподалеку от орбиты Нептуна. Огромное количество астероидов собрано между Юпитером и Марсом – они формируют так называемый Пояс астероидов. На сегодняшний день было обнаружено около 9000 объектов, проходящих рядом с орбитой Земли.

Многие из таких астероидов находятся в зоне доступа и многие же содержат огромные запасы ресурсов: начиная от воды, заканчивая платиной. Их использование даст практически бесконечный источник, который установит стабильность на Земле, увеличит благосостояние человечества, а также создаст основу для присутствия и исследования космоса.

Невероятные ресурсы

Существует более 1500 астероидов, до которых также легко добраться, как и до Луны. Их орбиты пересекаются с орбитой Земли. Такие астероиды обладают небольшой силой тяжести, что облегчает задачи посадки и взлета.

Ресурсы астероидов обладают рядом уникальных особенностей, что делает их еще более привлекательными. В отличие от Земли, где тяжелые металлы расположены ближе к ядру, металлы на астероидах распределены по всему объекту. Таким образом, извлекать их намного легче.

Человечество только начинает понимать невероятный потенциал астероидов. Первый контакт космического аппарата с одним из них произошел в 1991 году, когда аппарат «Галилео» пролетел рядом с астероидом Гаспра на его пути к Юпитеру. Наше знание таких небесных соседей было революционизировано немногочисленными международными и американскими миссиями, предпринятыми с тех пор. Во время каждой из них наука об астероидах заново переписывалась.

Об открытии и количестве астероидов

Миллионы астероидов пролетают мимо орбит Марса и Юпитера, чьи гравитационные пертурбации выталкивают некоторые объекты ближе к Солнцу. Таким образом и появился класс околоземных астероидов.

Пояс астероидов

Когда говорят об астероидах, большинство людей представляют именно их Пояс. Миллионы объектов составляющих его, образуют похожий на кольцо район меду орбитами Марса и Юпитера. Несмотря на то, что эти астероиды очень важны с точки зрения понимания истории возникновения и развития Солнечной Системы, по сравнению с околоземными, добраться до них не так легко.

Околоземные астероиды

Околоземные астероиды определяются как астероиды, чья орбита или ее часть находится в промежутке от 0,983 до 1,3 астрономических единиц от Солнца (1 астрономическая единица – расстояние от Земли до Солнца).

На 1960 год было известно лишь о 20 околоземных астроидах. К 1990 году число выросло до 134, а на сегодняшний день их количество оценивается в 9000 и растет все время. Ученые уверены, что на самом деле их более миллиона. Среди наблюдаемых сегодня астероидов 981 из них больше 1 км в диаметре, остальные – от 100 м до 1 км. 2800 – меньше 100 м в диаметре.

Околоземные астероиды классифицируются на 3 группы в зависимости от их расстояния от Солнца: Атоны, Аполлоны и Амуры.

Два околоземных астероида посещались космическими аппаратами-роботами: миссия НАСА посетила астероид 433 Эрос, а японская «Hayabusa» астроид 25143 Итокава. В настоящее время НАСА работает над миссией «OSIRIS-Rex», цель которой – полет к углеродному астероиду 1999 RQ36 в 2019 году.

Состав астероидов

Околоземные астроиды широко варьируются по своему составу. Каждый их низ в различных количествах содержит воду, металлы и углеродистые материалы.

Вода

Вода с астероидов – это ключевой ресурс в космосе. Воду можно превратить в ракетное топливо или снабжать ей людские нужды. Кроме того, она может кардинальным образом изменить способ исследования космоса. Один богатый водой астероид шириной 500 м содержит в 80 раз больше воды, чем может поместиться в самый крупный танкер, а если ее превратить в топливо для космических аппаратов, то получится в 200 раз больше, чем требовалось для запуска всех ракет в истории человечества.

Редкие металлы

Однажды получив доступ, научившись добывать, извлекать и использовать водные ресурсы астероидов, добыча на них металлов станет намного реальнее. Некоторые околоземные объекты содержат МПГ в таких высоких концентрациях, какими могут похвастаться лишь богатейшие земные рудники. Один богатый платиной астероид шириной 500 м содержит почти в 174 раза больше этого металла, чем добывается на Земле в год и в 1,5 раза больше всех известных мировых запасов МПГ. Такого количества достаточно для того, чтобы заполнить баскетбольную площадку на 4 раза выше кольца.

Другие ресурсы

Астроиды также содержат более распространенные металлы, например, железо, никель, кобальт. Иногда в невероятных количествах. Кроме того, на них можно встретить летучие вещества, например, азот, CO, CO2 и метан.

Использование астероидов

Вода – важнейший элемент Солнечной Системы. Для космоса вода, помимо своей критической гидратационной роли, предоставляет и другие важные преимущества. Она может защитить от солнечной радиации, использоваться в качестве топлива, давать кислород и т.д. На сегодняшний день, вся вода и связанные с ней ресурсы, необходимые для космических полетов, транспортируются с поверхности Земли по безмерно высоким ценам. Среди всех ограничений на человеческую экспансию в космос, это самое важное.

Вода – ключ к Солнечной Системе

Воду с астероидов можно как конвертировать в ракетное топливо, так и поставлять в специальные хранилища, расположенные в стратегических местах на орбите для заправки космических кораблей. Такой вид топлива, поставляемый и продаваемый, даст огромный толчок к развитию космических полетов.

Вода с астероидов может значительно сократить затраты на космические миссии, поскольку все они зависят, в первую очередь, от топлива. Например, намного более выгодно транспортировать литр воды с одного из астероидов на орбиту Земли, чем доставить этот же литр с поверхности планеты.

На орбите воду можно использовать для заправки спутников, увеличения грузоподъемности ракет, обслуживания орбитальных станций, предоставлять защиту от радиации и т.д.

Стоимость вопроса

Богатый водой астероид шириной 500 м обладает водой стоимостью $50 миллиардов. Ее можно доставить на специальную космическую станцию, где будут заправлять аппараты для полетов в дальний космос. Это весьма эффективно даже при скептических предположениях, что: 1. Извлекаться будет всего 1% воды, 2. Половина добытой воды будет использовать при доставке, 3. Успешность коммерческих космических полетов приведет к 100-кратном снижению стоимости запуска ракет с Земли. Конечно, при не столь консервативном подходе, ценность астероидов вырастет на многие триллионы или даже десятки триллионов долларов.

Экономика операций по разработке астероидов может также быть улучшена при использовании «местного» топлива. То есть горнодобывающий аппарат может летать между планетами с помощью воды от того астероида, на котором она добыта, что приведет к высокой окупаемости.

От воды к металлам

При условии успешности добычи воды, разработка других элементов и металлов станет намного более реальной. Другими словами, добыча воды позволит добывать металлы.

МПГ на Земле встречаются очень редко. Они (как и похожие на них металлы) обладают специфическими химическими свойствами, которые делают их невероятно ценными для промышленности и экономики 21 века. Кроме того, их изобилие может дать начало к новому, еще не изведанному, их применению.

Использование металлов с астероидов в космосе

Кроме доставки на Землю, металлы, добытые на астероидах, могут использоваться прямо в космосе. Такие элементы, как, например, железо и алюминий, можно будет применять при строительстве космических объектов, защиты аппаратов и т.д.

Целевые астероиды

Доступность

Более 1500 астероидов можно достигнуть также легко, как и Луны. Если брать в расчет обратный пути, то цифра увеличивается до 4000. Вода, извлекаемая на них, может быть использована для обратного полета на Землю. Это еще больше увеличивает доступность астероидов.

Расстояние от Земли

В определенных случаях, особенно во время первых миссий, следует нацеливаться на астероиды, которые проходят в районе Земля-Луна. Большая их часть не пролетает так близко, но есть и исключения.

Благодаря стремительному уровню обнаружения новых околоземных астероидов и увеличению возможностей их исследования, весьма вероятно, что большинство доступных объектов еще предстоит открыть.

Planetary Resources

Все выше перечисленное интересует многие организации и отдельных людей. Многие видят в этом будущее добычи в целом и Земли в частности.

Именно такими людьми была основана компания Planetary Resources, официально объявленная цель которой заключается применении коммерческих, инновационных технологий для исследования космоса. Planetary Resources собирается развивать недорогие роботизированные космические аппараты, которые позволят открывать тысячи богатых ресурсами астероидов. Компания планирует использовать природные богатства космоса для развития экономики, строя, таким образом, будущее всего человечества.

Ближайшая цель Planetary Resources – значительным образом сократить стоимость разработки астероидов. При этом будут объединяться все самые лучшие коммерческие аэрокосмические технологии. Как заявляют в компании, их философия позволит быстро развивать частное, коммерческое изучение космоса.

Технологии

Большая часть технологий Planetary Resources – их собственные. Технологический подход компании обусловлен несколькими простыми принципами. Planetary Resources объединяет современные инновации в области микроэлектроники, медицины, информационных технологий, роботостроения.

Arkyd series 100 LEO

Исследование космоса ставит специфичные преграды в деле строительства космических аппаратов. Критически важными аспектами в этом вопросе являются оптические коммуникации, микродвигатели и т.д. Planetary Resources активно работает над ними в сотрудничестве с НАСА. Сегодня уже создан космический телеском Arkyd series 100 LEO (рис.слева). Leo – это первый частный космический телескоп и средство достижения околоземных астероидов. Он будет находиться на низкой земной орбите.

Будущие усовершенствования телескопа Leo откроют дорогу для следующего этапа – запуска миссии аппарата Arkyd series 200 - Interceptor (рис.слева). В стыковке со специальным геостационарным спутником, Interceptor пройдет позиционирование и отправится к целевому астероиду для сбора всех необходимых данных о нем. Два или более аппарата Interceptor могут работать вместе. Они позволят определять, отслеживать и сопровождать объекты, пролетающие между Землей и Луной. Миссии Interceptor позволят Planetary Resources быстро получить данные о нескольких околоземных астероидах.

Дополнив Interceptor возможностью лазерной коммуникации в глубоком космосе, Planetary Resources сможет приступить к миссии аппарата под названиемArkyd series 300 Rendezvous Prospector (рис.слева), целью которой являются более дальние астероиды. Встав на орбиту одного из них, Rendezvous Prospector будет собирать данные о форме астероида, вращении, плотности, составе поверхности и недр. Применение Rendezvous Prospector продемонстрирует относительно небольшую стоимость возможности межпланетных полетов, что соответствует интересам НАСА, различных научных организаций, частных компаний и т.д.

Добыча на астероиде

Добыча и извлечение металлов и других ресурсов в условиях микрогравитации – дело, которое будет зависеть от значительных исследований и вложений. Planetary Resources будет работать над критически важными технологиями, которые позволят получать на астероидах как воду, так и металлы. Вкупе с недорогими аппаратами для исследования космоса, это дает возможность устойчивого развития этой области.

Команда Planetary Resources

В состав Planetary Resources входят выдающиеся в своем деле люди: ученые инженеры, специалисты в самых разных сферах. Основателями компании считаются бизнесмена и пионера коммерческой космической индустрии Эрик Андерсон и Питер Диамандис. Среди других членов команды Planetary Resources есть бывшие специалисты НАСА Крис Левицки и Крис Вурхиз, знаменитый кинорежиссер Джеймс Кэмерон, бывший астронавт НАСА Томас Джонс, бывший технический директор Microsoft Дэвид Васкевич и другие.

Мечты о колонизации космоса и добыче там природных ресурсов появились давно, но именно сегодня они становятся реальностью. В начале года компании и Deep Space Industries заявили о намерениях начать промышленное освоение космоса. Т&P разбираются, какие полезные ископаемые они собираются добывать, насколько эти проекты осуществимы и сможет ли космос стать новой Аляской для золотоискателей XXI века.

Если о промышленном освоении планет пока только мечтают, то с астероидами дела обстоят куда более оптимистично. В первую очередь речь идет только о самых ближайших к Земле объектах, да и то тех чья скорость не превышает порога первой космической . Что касается самих астероидов, то наиболее перспективными для добычи считаются, так называемые, астероиды M-класса, большая часть из которых почти целиком состоит из никеля и железа, а также астероиды S-класса, имеющие в своей породе силикаты железа и магния. Также исследователи предполагают, что на этих астероидах могут быть обнаружены залежи золота и металлов платиновой группы, последние же ввиду своей редкости на Земле представляет особый интерес. Для того чтобы представлять о каких цифрах идет речь: астероид средних размеров (диаметром порядка 1,5 километров) содержит металлов на 20 триллионов долларов.

Наконец, еще одна важнейшая цель космических золотоискателей - астероиды С-класса (примерно 75 процентов от всех астероидов Солнечной системы), на которых планируется добывать воду. По подсчетам, даже самые маленькие астероиды этой группы, диаметром в 7 метров, могут содержать в себе до 100 тонн воды. Недооценивать воду нельзя, не стоит забывать, что из нее можно получить водород, который затем использовать в качестве топлива. К тому же добыча воды непосредственно на астероидах позволит сэкономить деньги на ее доставку с Земли.

Что добывать в космосе

Платина - лакомый кусок для всех инвесторов. Именно за счет платины энтузиасты космической добычи ресурсов смогут окупить свои затраты.

От запасов воды будет зависеть работа всей добывающей станции. К тому же «водных» астероидов вблизи Земли больше всего: порядка 75 процентов.

Железо - важнейший металл современной промышленности, поэтому вполне очевидно, что на нем в первую очередь будет сконцентрированы усилия добытчиков.

Как добывать

Добывать на астероиде, после чего доставлять на Землю для переработки.

Фабрика по добыче полезных ископаемых строится непосредственно на поверхности астероида. Для этого необходимо разработать технологию удерживающую оборудование на поверхности астероида, так как из-за небольшой силы тяжести даже слабое физическое воздействие может легко оторвать конструкцию и унести ее в космос. Другая проблема этого способа - доставка сырья для последующей обработки, которая может обойтись очень дорого.

Система самовоспроизводящихся машин. Чтобы обеспечить работу производства без участия человека, предлагается вариант создания системы самовоспроизводящихся машин, каждая из которых за определенный срок собирает свою точную копию. В 80-е годы такой проект даже разрабатывался НАСА, правде речь тогда шла о поверхности Луны. Если за месяц такая машина будет способна собирать аналогичную себе, меньше чем через года таких машин будет больше тысячи, а через три более миллиарда. В качестве источника питания машин предлагается использовать энергию солнечных батарей.

Добывать и перерабатывать прямо на астероиде. Строить станции, обрабатывающие сырье на поверхности астероида. Достоинство этого способа в том, что он позволит значительно сэкономить средства на доставку ископаемых к месту добычи. Минусы - дополнительное оборудования, и соответственно, более высокая степень автоматизации.

Переместить астероид к Земле для последующей добычи. Притянуть астероид к Земле можно с помощью космического буксира, по принципу действия аналогичного тем, что доставляют сейчас спутники на орбиту Земли. Второй вариант - создание гравитационного буксира, технологии с помощью которой планируется защищать Землю от потенциально опасных астероидов. Буксир представляет собой небольшое тело, которое подходит вплотную к астероиду (на расстояние до 50 метров) и создает гравитационное возмущение, меняющее его траекторию. Третий вариант, самый смелый и неординарный - изменение альбедо (отражающей способности) астероида. Часть астероида накрывается пленкой или покрывается краской, после чего, согласно теоретическим выкладкам, из-за неравномерного нагрева поверхности Солнцем, скорость вращения астероида должна измениться.

Кто будет добывать

За создание отвечает американский бизнесмен Питер Диамантис, создатель фонда X-Prize . Ученый коллектив возглавляют бывшие сотрудники НАСА, а финансовую поддержку проекту оказывают Ларри Пейдж и Джеймс Кэмерон. Первичная задача компании - постройка телескопа Arkyd-100 , производство которого она оплачивает сама, а все пожертвования пойдут на обслуживание телескопа и непосредственно, запуск, намеченный на 2014 год. Планы у Arkyd-100 вполне скромны - компания рассчитывает испытать телескоп, а заодно сделать качественные снимки галактик, Луны, туманностей и прочих космических красот. Но уже последующие Arkyd-200 и Arkyd-300 будут заниматься конкретным поиском астероидов и подготовке к добыче сырья.

У руля Deep Space Industries стоит Рик Тамлинсон, приложивший руку к все-тому же фонду X-Prize, бывший сотрудник НАСА Джон Мэнкинс и австралийский ученый Марк Сонтер. Уже сейчас компания располагает двумя космическими аппаратами. Первый из них, FireFly, планируется к запуску в космос в 2015 году. Аппарат весит всего 25 килограмм и будет нацелен на поиск подходящих для будущего освоения астероидов, изучение их структуры, скорости вращения и других параметров. Второй, DragonFly, должен будет доставить куски астероидов массой 25-75 килограмм на Землю. Его запуск, согласно программе, осуществится в 2016 году. Главный секретное оружие Deep Space Industries - технология MicroGravity Foundry, микрогравитационный 3D-принтер, способный создавать высокоточные детали большой плотности в условиях малой гравитации. Уже к 2023 году компания рассчитывает на активную добычу на астероидах платины, железа, воды и газов.

НАСА тоже не стоит в стороне. К сентябрю 2016 года агентство планирует запустить аппарат OSIRIS-REX , который должен начать исследование астероида Бенну. Ориентировочно к концу 2018 году аппарат достигнет цели, возьмет пробу грунта и еще через два-три года вернется на Землю. В планах исследователей - проверить догадки о происхождении Солнечной системы, проследить за отклонением траектории астероида (существует, хоть и чрезвычайно малая, вероятность, что Бенну когда-нибудь может столкнуться с Землей), и, наконец, самое интересное: изучить грунт астероида на предмет полезных ископаемых.

Для анализа грунта на OSIRIS-REX будут работать 3 спектрометра: инфракрасный, тепловой и рентгеновский. Первый будет измерять инфракрасное излучение и искать углеродосодержащие материалы, второй - измерять температуру в поисках воды и глины. Третий - улавливать источники рентгеновского излучения для обнаружения металлов: прежде всего железа, магния и кремния.

Кому принадлежат космические ресурсы

Если глобальные планы компаний станут реальностью, встает еще один насущный вопрос: как будут разделяться права на добычу полезных ископаемых в космосе? Впервые этой проблемы коснулись еще в 1967 году, когда ООН приняла закон, запрещающий добычу ресурсов в космосе, пока компания-добытчик не представит де-факто захвата территории. О правах на сами ресурсы ничего сказано не было. Немного прояснил ситуацию документ ООН 1984 года, касающийся Луны. В нем заявлено, что «Луна и ее природные ресурсы являются общим наследием человечества», а использование ее ресурсов «должно осуществляться на благо и в интересах всех стран». При этом главные космические державы, СССР и США, этот документ проигнорировали и вопрос остался открытым до сегодняшнего дня.

Для решения вопроса некоторые специалисты предлагают взять за аналог систему, применяемую сейчас в Конвенции о международном морском праве, регулирующей добычу ископаемых с морского дна. Принципы ее более чем идеалистические - согласно конвенции, ни одно государство, так же как и частное лицо не может претендовать на право присвоения территории и ее ресурсов, эти права принадлежат всему человечеству, а сами ресурсы должны использоваться только в мирных целях. Но вряд ли это остановит агрессивную экспансию частных компаний. О характере будущей индустрии лучше всего высказался глава правления Deep Space Industries Рик Тамлинсон: «Существует миф, что впереди нас не ждет ничего хорошего и нам не на что надеяться. Этот миф существует только в умах верящих в него людей. Мы же убеждены, что это только начало».

Данный видеоурок посвящен теме «Ресурсы Мирового океана, космические и рекреационные ресурсы». Вы познакомитесь с основными ресурсами океана, их потенциалом использования в хозяйственной деятельности человека. В уроке рассмотрены особенности ресурсного потенциала шельфа Мирового океана и его использование в наши дни, а также даны прогнозы освоения ресурсов океана в последующие годы. Кроме того, в уроке дана подробная информация про космические (энергия ветра и солнца) и рекреационные ресурсы, приведены примеры их использования в различных регионах нашей планеты. Урок познакомит вас с классификацией рекреационных ресурсов и странами, отличающимися наибольшим разнообразием рекреационных ресурсов.

Тема: География природных ресурсов мира

Урок: Ресурсы Мирового океана, космические и рекреационные ресурсы

Мировой океан - основная часть гидросферы, которая образует водную оболочку, состоящую из вод отдельных океанов и их частей.Мировой океан является кладовой природных богатств.

Ресурсы Мирового океана :

1. Морская вода . Морская вода является главным ресурсом океана. Запасы воды составляют примерно 1370 млн куб. км, или 96,5% всей гидросферы. Морская вода содержит в себе огромное количество растворенных веществ, в первую очередь это соли, сера, марганец, магний, йод, бром и другие вещества. 1 куб. км морской воды содержит в себе 37 млн т растворенных веществ.

2. Минеральные ресурсы дна океана. На шельфе океана находится 1/3 всех мировых запасов нефти и газа. Наиболее активная добыча нефти и газа ведется в Мексиканском, Гвинейском, Персидском заливах, Северном море. Кроме того, на шельфе океана идет добыча твердых полезных ископаемых (например, титана, циркония, олова, золота, платины и др.). Также огромные запасы строительного материала имеются на шельфе: песок, гравий, известняк, ракушечник и др. Глубоководные равнинные части океана (ложе) богаты железомарганцевыми конкрециями. Активную разработку месторождений шельфа ведут следующие страны: Китай, США, Норвегия, Япония, Россия.

3. Биологические ресурсы. По образу жизни и местообитанию все живые организмы океана делят на три группы: планктон (мелкие организмы, свободно дрейфующие в толще воды), нектон (активно плавающие организмы) и бентос (организмы, обитающие в грунте и на дне). Биомасса океана насчитывает более 140 000 видов живых организмов.

На основе неравномерного распределения биомассы в океане выделяют следующие промысловые пояса:

Арктический.

Антарктический.

Северный умеренный.

Южный умеренный.

Тропическо-экваториальный.

Самые продуктивные акватории Мирового океана - это северные широты. В пределах северного умеренного и арктического поясов свою хозяйственную деятельность ведут Норвегия, Дания, США, Россия, Япония, Исландия, Канада.

4. Энергетические ресурсы. Мировой океан обладает огромными запасами энергии. В настоящее время человечество использует энергию приливов и отливов (Канада, США, Австралия, Великобритания) и энергию морских течений.

Климатические и космические ресурсы - неисчерпаемые ресурсы солнечной энергии, энергии ветра и влаги.

Солнечная энергия - самый большой источник энергии на Земле. Солнечную энергию лучше всего использовать (эффективно, выгодно) в странах с аридным климатом: в Саудовской Аравии, Алжире, Марокко, ОАЭ, Австралии, а также в Японии, США, Бразилии.

Ветровую энергию лучше всего использовать на побережье Северного, Балтийского, Средиземного морей, а также на побережье Северного Ледовитого океана. Некоторые страны особенно интенсивно развивают ветроэнергетику, в частности, на 2011 год в Дании с помощью ветрогенераторов производится 28% всего электричества, в Португалии - 19%, в Ирландии - 14%, в Испании - 16% и в Германии - 8%. В мае 2009 года 80 стран мира использовали ветроэнергетику на коммерческой основе.

Рис. 1. Ветрогенераторы

Агроклиматические ресурсы - ресурсы климата, оцениваемые с позиции жизнедеятельности сельскохозяйственных культур.

Агроклиматические факторы :

1. Воздух.

5. Питательные вещества.

Рис. 2. Агроклиматическая карта мира

Рекреация - система оздоровительных мероприятий, осуществляемых с целью восстановления нормального самочувствия и работоспособности утомленного человека.

Рекреационные ресурсы - это ресурсы всех видов, которые могут использоваться для удовлетворения потребностей населения в отдыхе и туризме.

Типы рекреационных ресурсов :

1. Природные (парки, пляжи, водоемы, горные ландшафты, ПТК).

2. Антропогенные (музеи, памятники культуры, дома отдыха).

Природно-рекреационные группы :

1. Медико-биологическая.

2. Психолого-эстетическая.

3. Технологическая.

Антропогенные группы :

1. Архитектурные.

2. Исторические.

3. Археологические.

Больше всего туристов привлекают те регионы и страны, в которых природные ресурсы сочетаются с историческими: Франция, Китай, Испания, Италия, Марокко, Индия.

Рис. 3. Эйфелева башня - один из самых посещаемых туристических объектов

Домашнее задание

Тема 2, П. 2

1. Приведите примеры агроклиматических ресурсов.

2. Как вы думаете, что может повлиять на посещаемость страны, региона туристами?

Список литературы

Основная

1. География. Базовый уровень. 10-11 кл.: Учебник для общеобразовательных учреждений / А.П. Кузнецов, Э.В. Ким. - 3-е изд., стереотип. - М.: Дрофа, 2012. - 367 с.

2. Экономическая и социальная география мира: Учеб. для 10 кл. общеобразовательных учреждений / В.П. Максаковский. - 13-е изд. - М.: Просвещение, АО «Московские учебники», 2005. - 400 с.

3. Атлас с комплектом контурных карт для 10 класса. Экономическая и социальная география мира. - Омск: ФГУП «Омская картографическая фабрика», 2012 - 76 с.

Дополнительная

1. Экономическая и социальная география России: Учебник для вузов / Под ред. проф. А.Т. Хрущева. - М.: Дрофа, 2001. - 672 с.: ил., карт.: цв. вкл.

Энциклопедии, словари, справочники и статистические сборники

1. География: справочник для старшеклассников и поступающих в вузы. - 2-е изд., испр. и дораб. - М.: АСТ-ПРЕСС ШКОЛА, 2008. - 656 с.

Литература для подготовки к ГИА и ЕГЭ

1. География. Тесты. 10 класс / Г.Н. Элькин. - СПб.: Паритет, 2005. - 112 с.

2. Тематический контроль по географии. Экономическая и социальная география мира. 10 класс / Э.М. Амбарцумова. - М.: Интеллект-Центр, 2009. - 80 с.

3. Самое полное издание типовых вариантов реальных заданий ЕГЭ: 2010. География / Сост. Ю.А. Соловьева. - М.: Астрель, 2010. - 221 с.

4. Тематический контроль. География. Природа России. 8 класс / Н.Е. Бургасова, С.В. Банников: Учебное пособие. - М.: Интеллект-Центр, 2010. - 144 с.

5. Тесты по географии: 8-9 классы: к учебнику под ред. В.П. Дронова «География России. 8-9 классы: учебник для общеобразовательных учреждений» / В.И. Евдокимов. - М.: Экзамен, 2009. - 109 с.

6. Оптимальный банк заданий для подготовки учащихся. Единый государственный экзамен 2012. География. Учебное пособие / Сост. Э.М. Амбарцумова, С.Е. Дюкова. - М.: Интеллект-Центр, 2012. - 256 с.

7. Самое полное издание типовых вариантов реальных заданий ЕГЭ: 2010. География / Сост. Ю.А. Соловьева. - М.: АСТ: Астрель, 2010. - 223 с.

8. Государственная итоговая аттестация выпускников 9 классов в новой форме. География. 2013. Учебное пособие / В.В. Барабанов. - М.: Интеллект-Центр, 2013. - 80 с.

9. География. Диагностические работы в формате ЕГЭ 2011. - М.: МЦНМО, 2011. - 72 с.

10. Тесты. География. 6-10 кл.: Учебно-методическое пособие / А.А. Летягин. - М.: ООО «Агентство «КРПА «Олимп»: Астрель, АСТ, 2001. - 284 с.

11. ЕГЭ 2010. География. Сборник заданий / Ю.А. Соловьева. - М.: Эксмо, 2009. - 272 с.

12. Тесты по географии: 10 класс: к учебнику В.П. Максаковского «Экономическая и социальная география мира. 10 класс» / Е.В. Баранчиков. - 2-е изд., стереотип. - М.: Издательство «Экзамен», 2009. - 94 с.

13. Самое полное издание типовых вариантов реальных заданий ЕГЭ: 2009. География / Сост. Ю.А. Соловьева. - М.: АСТ: Астрель, 2009. - 250 с.

14. Единый государственный экзамен 2009. География. Универсальные материалы для подготовки учащихся / ФИПИ - М.: Интеллект-Центр, 2009. - 240 с.

15. География. Ответы на вопросы. Устный экзамен, теория и практика / В.П. Бондарев. - М.: Издательство «Экзамен», 2003. - 160 с.

Материалы в сети Интернет

1. Федеральный институт педагогических измерений ().

2. Федеральный портал Российское Образование ().

4. Официальный информационный портал ЕГЭ ().

Астероиды - это начальный материал, оставшийся после образования Солнечной Системы. Они распространены везде: некоторые пролетают совсем близко к Солнцу, другие обнаружены неподалеку от орбиты Нептуна. Огромное количество астероидов собрано между Юпитером и Марсом - они формируют так называемый Пояс астероидов. На сегодняшний день было обнаружено около 9000 объектов, проходящих рядом с орбитой Земли.

Многие из таких астероидов находятся в зоне доступа и многие же содержат огромные запасы ресурсов: начиная от воды, заканчивая платиной. Их использование даст практически бесконечный источник, который установит стабильность на Земле, увеличит благосостояние человечества, а также создаст основу для присутствия и исследования космоса.

Невероятные ресурсы

Существует более 1500 астероидов, до которых также легко добраться, как и до Луны. Их орбиты пересекаются с орбитой Земли. Такие астероиды обладают небольшой силой тяжести, что облегчает задачи посадки и взлета.

Ресурсы астероидов обладают рядом уникальных особенностей, что делает их еще более привлекательными. В отличие от Земли, где тяжелые металлы расположены ближе к ядру, металлы на астероидах распределены по всему объекту. Таким образом, извлекать их намного легче.

Человечество только начинает понимать невероятный потенциал астероидов. Первый контакт космического аппарата с одним из них произошел в 1991 году, когда аппарат «Галилео» пролетел рядом с астероидом Гаспра на его пути к Юпитеру. Наше знание таких небесных соседей было революционизировано немногочисленными международными и американскими миссиями, предпринятыми с тех пор. Во время каждой из них наука об астероидах заново переписывалась.

Об открытии и количестве астероидов

Миллионы астероидов пролетают мимо орбит Марса и Юпитера, чьи гравитационные пертурбации выталкивают некоторые объекты ближе к Солнцу. Таким образом и появился класс околоземных астероидов.

Пояс астероидов

Когда говорят об астероидах, большинство людей представляют именно их Пояс. Миллионы объектов составляющих его, образуют похожий на кольцо район меду орбитами Марса и Юпитера. Несмотря на то, что эти астероиды очень важны с точки зрения понимания истории возникновения и развития Солнечной Системы, по сравнению с околоземными, добраться до них не так легко.

Околоземные астероиды

Околоземные астероиды определяются как астероиды, чья орбита или ее часть находится в промежутке от 0,983 до 1,3 астрономических единиц от Солнца (1 астрономическая единица - расстояние от Земли до Солнца).

На 1960 год было известно лишь о 20 околоземных астроидах. К 1990 году число выросло до 134, а на сегодняшний день их количество оценивается в 9000 и растет все время. Ученые уверены, что на самом деле их более миллиона. Среди наблюдаемых сегодня астероидов 981 из них больше 1 км в диаметре, остальные - от 100 м до 1 км. 2800 - меньше 100 м в диаметре.

Околоземные астероиды классифицируются на 3 группы в зависимости от их расстояния от Солнца: Атоны, Аполлоны и Амуры.

Два околоземных астероида посещались космическими аппаратами-роботами: миссия НАСА посетила астероид 433 Эрос, а японская «Hayabusa» астроид 25143 Итокава. В настоящее время НАСА работает над миссией «OSIRIS-Rex», цель которой - полет к углеродному астероиду 1999 RQ36 в 2019 году.

Состав астероидов

Околоземные астроиды широко варьируются по своему составу. Каждый их низ в различных количествах содержит воду, металлы и углеродистые материалы.

Вода

Вода с астероидов - это ключевой ресурс в космосе. Воду можно превратить в ракетное топливо или снабжать ей людские нужды. Кроме того, она может кардинальным образом изменить способ исследования космоса. Один богатый водой астероид шириной 500 м содержит в 80 раз больше воды, чем может поместиться в самый крупный танкер, а если ее превратить в топливо для космических аппаратов, то получится в 200 раз больше, чем требовалось для запуска всех ракет в истории человечества.

Редкие металлы

Однажды получив доступ, научившись добывать, извлекать и использовать водные ресурсы астероидов, добыча на них металлов станет намного реальнее. Некоторые околоземные объекты содержат МПГ в таких высоких концентрациях, какими могут похвастаться лишь богатейшие земные рудники. Один богатый платиной астероид шириной 500 м содержит почти в 174 раза больше этого металла, чем добывается на Земле в год и в 1,5 раза больше всех известных мировых запасов МПГ. Такого количества достаточно для того, чтобы заполнить баскетбольную площадку на 4 раза выше кольца.

Другие ресурсы

Астроиды также содержат более распространенные металлы, например, железо, никель, кобальт. Иногда в невероятных количествах. Кроме того, на них можно встретить летучие вещества, например, азот, CO, CO2 и метан.

Использование астероидов

Вода - важнейший элемент Солнечной Системы. Для космоса вода, помимо своей критической гидратационной роли, предоставляет и другие важные преимущества. Она может защитить от солнечной радиации, использоваться в качестве топлива, давать кислород и т.д. На сегодняшний день, вся вода и связанные с ней ресурсы, необходимые для космических полетов, транспортируются с поверхности Земли по безмерно высоким ценам. Среди всех ограничений на человеческую экспансию в космос, это самое важное.

Вода - ключ к Солнечной Системе

Воду с астероидов можно как конвертировать в ракетное топливо, так и поставлять в специальные хранилища, расположенные в стратегических местах на орбите для заправки космических кораблей. Такой вид топлива, поставляемый и продаваемый, даст огромный толчок к развитию космических полетов.

Вода с астероидов может значительно сократить затраты на космические миссии, поскольку все они зависят, в первую очередь, от топлива. Например, намного более выгодно транспортировать литр воды с одного из астероидов на орбиту Земли, чем доставить этот же литр с поверхности планеты.

На орбите воду можно использовать для заправки спутников, увеличения грузоподъемности ракет, обслуживания орбитальных станций, предоставлять защиту от радиации и т.д.

Стоимость вопроса

Богатый водой астероид шириной 500 м обладает водой стоимостью $50 миллиардов. Ее можно доставить на специальную космическую станцию, где будут заправлять аппараты для полетов в дальний космос. Это весьма эффективно даже при скептических предположениях, что: 1. Извлекаться будет всего 1% воды, 2. Половина добытой воды будет использовать при доставке, 3. Успешность коммерческих космических полетов приведет к 100-кратном снижению стоимости запуска ракет с Земли. Конечно, при не столь консервативном подходе, ценность астероидов вырастет на многие триллионы или даже десятки триллионов долларов.

Экономика операций по разработке астероидов может также быть улучшена при использовании «местного» топлива. То есть горнодобывающий аппарат может летать между планетами с помощью воды от того астероида, на котором она добыта, что приведет к высокой окупаемости.

От воды к металлам

При условии успешности добычи воды, разработка других элементов и металлов станет намного более реальной. Другими словами, добыча воды позволит добывать металлы.

МПГ на Земле встречаются очень редко. Они (как и похожие на них металлы) обладают специфическими химическими свойствами, которые делают их невероятно ценными для промышленности и экономики 21 века. Кроме того, их изобилие может дать начало к новому, еще не изведанному, их применению.

Использование металлов с астероидов в космосе

Кроме доставки на Землю, металлы, добытые на астероидах, могут использоваться прямо в космосе. Такие элементы, как, например, железо и алюминий, можно будет применять при строительстве космических объектов, защиты аппаратов и т.д.

Целевые астероиды

Доступность

Более 1500 астероидов можно достигнуть также легко, как и Луны. Если брать в расчет обратный пути, то цифра увеличивается до 4000. Вода, извлекаемая на них, может быть использована для обратного полета на Землю. Это еще больше увеличивает доступность астероидов.

Расстояние от Земли

В определенных случаях, особенно во время первых миссий, следует нацеливаться на астероиды, которые проходят в районе Земля-Луна. Большая их часть не пролетает так близко, но есть и исключения.

Благодаря стремительному уровню обнаружения новых околоземных астероидов и увеличению возможностей их исследования, весьма вероятно, что большинство доступных объектов еще предстоит открыть.

Planetary Resources

Все выше перечисленное интересует многие организации и отдельных людей. Многие видят в этом будущее добычи в целом и Земли в частности.

Именно такими людьми была основана компания Planetary Resources, официально объявленная цель которой заключается применении коммерческих, инновационных технологий для исследования космоса. Planetary Resources собирается развивать недорогие роботизированные космические аппараты, которые позволят открывать тысячи богатых ресурсами астероидов. Компания планирует использовать природные богатства космоса для развития экономики, строя, таким образом, будущее всего человечества.

Ближайшая цель Planetary Resources - значительным образом сократить стоимость разработки астероидов. При этом будут объединяться все самые лучшие коммерческие аэрокосмические технологии. Как заявляют в компании, их философия позволит быстро развивать частное, коммерческое изучение космоса.

Технологии

Большая часть технологий Planetary Resources - их собственные. Технологический подход компании обусловлен несколькими простыми принципами. Planetary Resources объединяет современные инновации в области микроэлектроники, медицины, информационных технологий, роботостроения.

Arkyd series 100 LEO

Исследование космоса ставит специфичные преграды в деле строительства космических аппаратов. Критически важными аспектами в этом вопросе являются оптические коммуникации, микродвигатели и т.д. Planetary Resources активно работает над ними в сотрудничестве с НАСА. Сегодня уже создан космический телеском Arkyd series 100 LEO (рис.слева). Leo - это первый частный космический телескоп и средство достижения околоземных астероидов. Он будет находиться на низкой земной орбите.

Будущие усовершенствования телескопа Leo откроют дорогу для следующего этапа - запуска миссии аппарата Arkyd series 200 - Interceptor (рис.слева). В стыковке со специальным геостационарным спутником, Interceptor пройдет позиционирование и отправится к целевому астероиду для сбора всех необходимых данных о нем. Два или более аппарата Interceptor могут работать вместе. Они позволят определять, отслеживать и сопровождать объекты, пролетающие между Землей и Луной. Миссии Interceptor позволят Planetary Resources быстро получить данные о нескольких околоземных астероидах.

Дополнив Interceptor возможностью лазерной коммуникации в глубоком космосе, Planetary Resources сможет приступить к миссии аппарата под названием Arkyd series 300 Rendezvous Prospector (рис.слева), целью которой являются более дальние астероиды. Встав на орбиту одного из них, Rendezvous Prospector будет собирать данные о форме астероида, вращении, плотности, составе поверхности и недр. Применение Rendezvous Prospector продемонстрирует относительно небольшую стоимость возможности межпланетных полетов, что соответствует интересам НАСА, различных научных организаций, частных компаний и т.д.

Добыча на астероиде

Добыча и извлечение металлов и других ресурсов в условиях микрогравитации - дело, которое будет зависеть от значительных исследований и вложений. Planetary Resources будет работать над критически важными технологиями, которые позволят получать на астероидах как воду, так и металлы. Вкупе с недорогими аппаратами для исследования космоса, это дает возможность устойчивого развития этой области.

Команда Planetary Resources

В состав Planetary Resources входят выдающиеся в своем деле люди: ученые инженеры, специалисты в самых разных сферах. Основателями компании считаются бизнесмена и пионера коммерческой космической индустрии Эрик Андерсон и Питер Диамандис. Среди других членов команды Planetary Resources есть бывшие специалисты НАСА Крис Левицки и Крис Вурхиз, знаменитый кинорежиссер Джеймс Кэмерон, бывший астронавт НАСА Томас Джонс, бывший технический директор Microsoft Дэвид Васкевич и другие.

В настоящее время достаточно большое внимание уделяется использованию альтернативных источников всевозможных ресурсов. К примеру, человечество уже давно занимается разработками получения энергии из возобновляемых веществ и материалов, таких как тепло ядра планеты, приливы, солнечный свет и так далее. В нижеприведенной статье будут рассмотрены климатические и космические ресурсы мира. Их основное достоинство заключается в том, что они являются возобновляемыми. Следовательно, их многократное использование в достаточной степени эффективно, а запасы можно считать безграничными.

Первая категория

Под климатическими ресурсами традиционно понимается энергия солнца, ветра и так далее. Данный термин определяет различные неисчерпаемые природные источники. А свое название подобная категория получила в результате того, что ресурсы, входящие в ее состав, характеризуются теми или иными особенностями климата региона. Помимо этого в данной группе выделяют также подкатегорию. Она носит название Основными определяющими факторами, влияющими на возможность развития подобных источников, являются воздух, тепло, влага, свет и прочие питательные вещества.

В свою очередь, вторая из представленных ранее категорий объединяет неисчерпаемые источники, которые находятся вне пределов нашей планеты. К числу подобных можно отнести всем известую энергию Солнца. Ее и рассмотрим подробнее.

Способы использования

Для начала охарактеризуем основные направления развития солнечной энергетики как составляющую группы "Космические ресурсы мира". В настоящее время выделяют две основополагающие идеи. Первая заключается в запуске на околоземную орбиту специального спутника, оснащенного значительным количеством солнечных батарей. Посредством фотоэлементов попадающий на их поверхность свет будет преобразовываться в электрическую энергию, а после передаваться на специальные станции-приемники на Земле. Вторая идея основана на схожем принципе. Отличие заключается в том, что космические ресурсы будут собираться посредством которые будут установлены на экваторе естественного В таком случае система будет образовывать так называемый "лунный пояс".

Передача энергии

Конечно, космические как и любые другие, считаются малоэффективными без соответствующего развития данной отрасли. А для этого необходима эффективная выработка, которая невозможна без высококачественной транспортировки. Следовательно, значительное внимание необходимо уделить способам передачи энергии от солнечных батарей на Землю. В настоящее время разработано два основных способа: посредством радиоволн и светового луча. Однако на данном этапе возникла проблема. на Землю должна безопасно доставлять ресурс космический. Аппарат, который в свою очередь будет осуществлять подобные действия, не должен оказывать разрушающего воздействия на окружающую среду и организмы, живущие в ней. К сожалению, передача преобразованной электрической энергии в некотором диапазоне частот способна ионизировать атомы веществ. Таким образом, недостаток системы заключается в том, что космические ресурсы можно будет передать только на достаточно ограниченном количестве частот.

Плюсы и минусы

Как и у любой другой технологии, у представленной ранее существуют свои особенности, преимущества и недостатки. К числу достоинств можно отнести то, что космические ресурсы за пределами околоземного пространства будут в значительно большем доступе для использования. К примеру, солнечная энергия. На поверхность планеты попадает лишь 20-30% от всего света, испускаемого нашей звездой. В то же время фотоэлемент, который будет расположен на орбите, получит более 90%. Помимо этого, среди достоинств, которыми обладают космические ресурсы мира, можно выделить долговечность используемых конструкций. Подобное обстоятельство возможно в связи с тем, что за пределами планеты нет ни атмосферы, ни воздействия разрушающего действия кислорода и других ее элементов. Тем не менее космические обладают значительным количеством недостатков. Одним из первых стоит высокая стоимость установок по добыче и транспортировке. Вторым можно считать труднодоступность и сложность эксплуатации. Помимо этого потребуется еще и значительное количество специально обученного персонала. Третьим недостатком подобных систем можно считать значительные потери при передаче энергии от космической станции на Землю. По подсчетам специалистов вышеописанная транспортировка будет отнимать до 50 процентов от всего выработанного электричества.

Важные особенности

Как уже говорилось ранее, рассматриваемая технология обладает некоторыми отличительными характеристиками. Однако именно они определяют легкодоступность Перечислим наиболее важные из них. В первую очередь следует отметить проблематику нахождения станции-спутника на одном месте. Как и во всех прочих законах природы, здесь будет работать правило действия и противодействия. Следовательно, с одной стороны будет сказываться давление потоков солнечной радиации, а с другой - электромагнитное излучение планеты. Заданное изначально положение спутника должны будут поддерживать Сообщение между станцией и приемниками на поверхности планеты надлежит поддерживать на высоком уровне и обеспечивать требуемой степенью безопасности и точности. Это вторая особенность, которой характеризуется использование космических ресурсов. К третьему традиционно относят эффективную работоспособность фотоэлементов и электронных компонентов даже в сложных условиях, например, при высоких значениях температур. Четвертая особенность, которая в настоящее время не позволяет обеспечить общедоступность вышеописанных технологий, заключается в достаточно высокой стоимости как ракет-носителей, так и непосредственно самих космических электростанций.

Прочие возможности

В связи с тем что ресурсы, которые в настоящее время имеются на Земле, в большинстве своем являются невозобновляемыми, а их потребление человечеством с течением времени, наоборот, увеличивается, с приближением момента полнейшего исчезновения важнейших ресурсов люди все больше задумываются об использовании альтернативных источников энергии. В том числе к ним относят и космические запасы веществ и материалов. Однако помимо возможности эффективной добычи из энергии Солнца человечество рассматривает и прочие не менее интересные возможности. К примеру, разработка месторождений ценных для землян веществ может проводиться на космических телах, расположенных в нашей Солнечной системе. Рассмотрим некоторые из них подробнее.

Луна

Полеты на нее уже довольно давно перестали быть аспектами научной фантастики. В настоящее время спутник нашей планеты бороздят исследовательские зонды. Именно благодаря им человечество узнало, что лунная поверхность имеет состав, схожий с земной корой. Следовательно, там возможна разработка месторождений таких ценных веществ, как титан и гелий.

Марс

На так называемой "красной" планете также много всего интересного. Согласно исследованиям, кора Марса в гораздо большей степени богата чистыми металлическими рудами. Таким образом, на нем в будущем может начаться разработка месторождений меди, олова, никеля, свинца, железа, кобальта и прочих ценных веществ. Кроме того, возможно, именно Марс будет считаться главным поставщиком редких металлических руд. К примеру, таких как рутений, скандий или торий.

Планеты-гиганты

Даже дальние соседи нашей планеты могут снабжать нас многими необходимыми для нормального существования и дальнейшего развития человечества веществами. Таким образом, колонии на дальних рубежах нашей Солнечной системы будут поставлять на Землю ценное химическое сырье.

Астероиды

В настоящее время ученые постановили, что именно вышеописанные космические тела, бороздящие пространства Вселенной, могут стать наиболее важными станциями по обеспечению множеством необходимых ресурсов. Например, на некоторых астероидах при помощи специализированной техники и тщательного анализа полученных данных были обнаружены такие ценные металлы, как рубидий и иридий, а также железо. Помимо прочего, вышеописанные являются отличными поставщиками сложного соединения, которое носит название дейтерий. В дальнейшем планируется использование именно этого вещества в качестве основного топливного сырья для электрических станций будущего. Отдельно следует отметить еще один жизненно важный вопрос. В настоящее время определенный процент населения Земли страдает от постоянной нехватки воды. В будущем подобная проблема может распространиться на большей части территории планеты. В таком случае именно астероиды могут стать поставщиками подобного жизненно необходимого ресурса. Поскольку на многих из них содержится пресная вода в виде льда.