Дать определение: насыщенный пар, влажный пар, сухой пар, перегретый пар. Молекулярная физика. Насыщенные и ненасыщенные пары

Наверняка многим приходилось наблюдать картину, как стоящая открытой емкость с водой через некоторое время оказывается пустой. Если же ее прикрыть крышкой, то вода никуда не девается. Причина всем известна - вода испаряется. Объяснение такому явлению простое: часть молекул воды имеет достаточно большую скорость движения для того, чтобы покинуть жидкость. Вот этот процесс перехода жидкости в газообразное состояние и называется испарением.

Другой процесс, а именно превращение пара в жидкость, называется конденсацией. Эти два процесса, испарение и конденсация, идут постоянно: часть воды испаряется, часть - конденсируется. Если объем над поверхностью воды неограничен, то преобладает процесс испарения. Испарившаяся вода удаляется, как, например, происходит над поверхностью открытой воды, и жидкость постепенно переходит в газообразное состояние - пар.

А вот если объем свободного пространства над жидкостью ограничен, то возникает несколько другая ситуация. Испарившаяся вода не может покинуть этот объем, и над поверхностью воды образуется насыщенный пар. Так называется пар, находящийся в состоянии равновесия, когда количество испарившейся воды и конденсировавшегося пара равны. Вода не убывает и не прибывает, наступает состояние равновесия между испарением и конденсацией.

Теперь мы знаем, что такое насыщенный пар, и его свойства, возможно, окажутся для нас достаточно любопытными. Мы с самого начала определили, что объем свободного пространства над поверхностью жидкости ограничен. Над ней образовался насыщенный пар. А если теперь этот свободный объем уменьшить? Что будет? В этом случае установившееся равновесие между конденсацией и испарением нарушится. Начнет преобладать процесс конденсации, объем влаги увеличится, а пара - уменьшится.

Давление пара, при котором он находится в равновесии с жидкостью, называется Если мы уменьшаем объем свободного пространства над водой, то давление пара увеличивается. Следствием этого и будет переход пара в воду. При увеличенном занимает меньше места, чем насыщенный пар. Из этого следует еще один вывод: если температура постоянна, то давление насыщенного пара при любом объеме одинаково.

Существует еще один вариант поведения пара - объем над поверхностью воды уменьшают, а переход пара в жидкость не происходит. Значит, над поверхностью находится ненасыщенный пар. В дальнейшем, при уменьшении объема при постоянной температуре, пар начинает превращаться в воду - значит, образовался насыщенный пар. Но не зря было оговорено условие, что все происходит при постоянной температуре. Существует определенное ее значение, при котором пар может превратиться в жидкость.

Это значение называется критической температурой. Вещество остается газом при температуре выше критической, если же она ниже критической, то газ превращается в жидкость. Каждое вещество имеет свое значение Стоит отметить еще две особенности пара: он может быть как влажный, так и сухой насыщенный пар. Во влажном присутствуют капли воды, а сухой пар не содержит влаги.

Существует еще так называемый перегретый пар - это сухой пар с температурой выше критической. В этом случае считается, что в замкнутом объеме уже нет жидкости, а присутствует исключительно пар. Перегретый пар в основном используется в технике и энергетике. перегретого пара позволяет транспортировать его с помощью паропроводов и использовать в Благодаря отсутствию воды в перегретом паре срок службы турбины увеличивается.

В статье рассмотрено, что собой представляет насыщенный пар, его виды и свойства, а также процесс его образования и превращения в жидкость.

Жидкости имеют свойство испаряться. Если бы мы капнули на стол по капле воды, эфира и ртути (только не делайте этого в домашних условиях!), смогли бы наблюдать, как постепенно капли исчезают – испаряются. Одни жидкости испаряются быстрее, другие медленнее. Процесс испарения жидкости еще называется парообразованием. А обратный процесс превращения пара в жидкость – конденсацией.

Эти два процесса иллюстрируют фазовый переход – процесс перехода веществ из одного агрегатного состояния в другое:

  • испарение (переход из жидкого в газообразное состояние);
  • конденсация (переход из газообразного состояния в жидкое);
  • десублимация (переход из газообразного состояния в твердое, минуя жидкую фазу);
  • возгонка, она же сублимация (переход из твердого в газообразное состояние, минуя жидкое).

Сейчас, к слову, подходящий сезон, чтобы наблюдать процесс десублимации в природе: иней и изморозь на деревьях и предметах, морозные узоры на окнах – ее результат.

Как образуется насыщенный и ненасыщенный пар

Но вернемся к парообразованию. Мы продолжим экспериментировать и нальем жидкость – воду, например, в открытый сосуд, а к нему подсоединим манометр. Невидимое глазу, в сосуде происходит испарение. Все молекулы жидкости находятся в непрерывном движении. Некоторые движутся так быстро, что их кинетическая энергия оказывается сильнее той, что связывает молекулы жидкости вместе.

Покинув жидкость, эти молекулы продолжают хаотически двигаться в пространстве, подавляющее их большинство рассеивается в нем – так образуется ненасыщенный пар . Лишь небольшая их часть возвращается обратно в жидкость.

Если закроем сосуд, молекул пара постепенно будет становиться все больше. И все больше их будет возвращаться в жидкость. При этом будет увеличиваться давление пара. Это зафиксирует подсоединенный к сосуду манометр.

Спустя какое-то время число молекул, вылетающих из жидкости и возвращающихся в нее, сравняется. Давление пара перестанет изменяться. В результате насыщения пара установится термодинамическое равновесие системы жидкость-пар. То есть испарение и конденсация будут равны.

Свойства насыщенного пара

Чтобы их проиллюстрировать наглядно, используем еще один эксперимент. Призовите всю силу своего воображения, чтобы представить его. Итак, возьмем ртутный манометр, состоящий из двух колен – сообщающихся трубок. В оба налита ртуть, один конец открыт, второй запаян и над ртутью в нем находится еще некоторое количество эфира и его насыщенного пара. Если опускать и поднимать не запаянное колено, уровень ртути в запаянном будет также опускаться и подниматься.

При этом будет изменяться и количество (объем) насыщенного пара эфира. Разность уровней ртутных столбиков в обоих коленах манометра показывает давление насыщенного пара эфира. Оно будет сохраняться неизменным все время.

Отсюда вытекает свойство насыщенного пара – его давление не зависит от занимаемого им объема. Давление насыщенных паров различных жидкостей (воды и эфира, к примеру) разное при одинаковой температуре.

Однако температура насыщенного пара имеет значение. Чем выше температура, тем выше и давление. Давление насыщенного пара с увеличением температуры возрастает быстрее, чем это происходит с ненасыщенным паром. Температура и давление ненасыщенного пара связаны линейной зависимостью.

Можно провести еще один любопытный опыт. Взять пустую колбу без паров жидкости, закрыть ее и подсоединить манометр. Постепенно, по капле, подавать внутрь колбы жидкость. По мере поступления жидкости и ее испарения устанавливается давление насыщенного пара, наибольшее для данной жидкости при данной температуре.

Еще о температуре и насыщенном паре

Температура пара влияет и на скорость конденсации. Так же, как температура жидкости определяет скорость испарения – число молекул, которые вылетают с поверхности жидкости в единицу времени, другими словами.

У насыщенного пара его температура равна температуре жидкости. Чем выше температура насыщенного пара, тем выше его давление и плотность, ниже плотность жидкости. При достижении критической для вещества температуры плотность жидкости и пара одинаковая. Если температура пара выше критической для вещества температуры, физические различия между жидкостью и насыщенным паром стираются.

Определение давления насыщенного пара в смеси с другими газами

Мы сказали о неизменном при постоянной температуре давлении насыщенного пара. Мы определяли давление в «идеальных» условиях: когда в сосуде или колбе присутствуют жидкость и пар только одного вещества. Рассмотрим еще эксперимент, в котором молекулы вещества рассеяны в пространстве в смеси с другими газами.

Для этого возьмем два открытых стеклянных цилиндра и поместим в оба закрытые сосуды с эфиром. Как водится, подсоединим манометры. Один сосуд с эфиром раскрываем, после чего манометр фиксирует повышение давления. Разность между этим давлением и давлением в цилиндре с закрытым сосудом эфира и позволяет узнать давление насыщенного пара эфира.

О давлении и кипении

Испарение возможно не только с поверхности жидкости, но и в ее объеме – тогда его называют кипением. При повышении температуры жидкости образуются пузырьки пара. Когда давление насыщенного пара больше либо равно давлению газа в пузырьках, жидкость испаряется внутрь пузырьков. А те расширяются и поднимаются на поверхность.

Жидкости кипят при разных температурах. В обычных условиях вода закипает при 100 0 С. Но с изменением атмосферного давления меняется и температура кипения. Так, в горах, где воздух сильно разрежен и атмосферное давление ниже, по мере подъема в горы снижается и температура кипения воды.

Кстати, в герметично закрытом сосуде кипение невозможно вообще.

Еще один пример взаимосвязи давления пара и испарения демонстрирует такая характеристика содержания паров воды в воздухе, как относительная влажность воздуха. Она представляет собой отношение парциального давления паров воды к давлению насыщенного пара и определяется по формуле: φ = р/р о * 100%.

При понижении температуры воздуха концентрация водяных паров в нем повышается, т.е. они становятся более насыщенными. Эта температура называется точкой росы.

Подведем итоги

На несложных примерах мы разобрали суть процесса испарения и образующиеся в его результате ненасыщенный и насыщенный пар. Все эти явления вы ежедневно можете наблюдать вокруг себя: например, видеть высыхающие после дождя лужи на улицах или запотевшее от пара зеркало в ванной комнате. В ванной вы даже можете наблюдать, как сначала происходит парообразование, а потом конденсация скопившейся на зеркале влаги обратно в воду.

Вы также можете использовать эти знания, чтобы сделать свою жизнь более комфортной. Например, зимой во многих квартирах воздух очень сухой, и это плохо сказывается на самочувствии. Вы можете использовать современный прибор-увлажнитель, чтобы сделать его более влажным. Или по старинке поставить в комнате емкость с водой: постепенно испаряясь, вода насытит воздух своими парами.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Насыщенный пар.

Если сосуд с жидкостью плотно закрыть, то сначала количество жидкости уменьшится, а затем будет оставаться постоянным. При неиз менн ой температуре система жидкость - пар придет в состояние теплового равновесия и будет находиться в нем сколь угодно долго. Одновременно с процессом испарения происходит и конденсация, оба процесса в среднем комп енсируют друг друга. В первый момент, после того как жидкость нальют в сосуд и закроют его, жидкость будет испаряться и плотность пара над ней будет увеличиваться. Однако одновременно с этим будет расти и число молекул, возвращающихся в жидкость. Чем больше плотность пара, тем большее число его молекул возвращается в жидкость. В результате в закрытом сосуде при постоянной температуре установится динамическое (подвижное) равновесие между жидкостью и паром, т. е. число молекул, покидающих поверхность жидкости за некото р ый промежуток времени, будет равно в среднем числу молекул пара, возвратившихся за то же время в жидкост ь. Пар, нах одящийся в динамическом равновесии со своей жидкостью, называют насыщенным паром. Это определение подчерки вает, что в данном объеме при данной температуре не может находиться большее количество пара.

Давление насыщенного пара .

Что будет происходить с насыщенным паром, если уменьшить занимаемый им объем? Например, если сжимать пар, находящийся в равновесии с жидкостью в цилиндре под поршнем, поддерживая температуру содержимого цилиндра постоянной. При сжатии пара равновесие начнет нарушаться. Плотность пара в первый момент немного увеличится, и из газа в жидкость начнет переходить большее число молекул, чем из жидкости в газ. Ведь число молекул, покидающих жидкость в единицу времени, зависит только от температуры, и сжатие пара это число не меняет. Процесс продолжается до тех пор, пока вновь не установится динамическое равновесие и плотность пара, а значит, и концентрация его молекул не примут прежних своих значений. Следовательно, концентрация молекул насыщенного пара при постоянной температуре не зависит от его объема. Так как давление пропорционально концентрации молекул (p=nkT), то из этого определения следует, что давление насыщенного пара не зависит от занимаемого им объема. Давление p н.п. пара, при котором жидкость находится в равновесии со своим паром, называют давлением насыщенного пара.

Зависимость давления насыщенного пара от температуры.

Состояние насыщенного пара, как показывает опыт, приближенно описывается уравнением состояния идеального газа, а его давление определяется формулой Р = nкТ С ростом температуры давление растет. Так как давление насыщенного пара не зависит от объема, то, следовательно, оно зависит только от температуры. Однако зависимость р н.п. от Т, найденная экспериментально, не является прямо пропорциональной, как у идеального газа при постоянном объеме. С увеличением температуры давление реального насыщенного пара растет быстрее, чем давление идеального газа (рис. уча сток кривой 12). Почему это происходит? При нагревании жидкости в закрытом сосуде часть жидкости превращается в пар. В результате согласно формуле Р = nкТ давление насыщенного пара растет не только вследствие повышения температуры жидкости, но и вследствие увеличения концентрации молекул (плотности) пара. В основном увеличение давления при повышении температуры определяется именно увеличением конц ентрац ии. (Главное различие в поведении и деального газа и насыщенного пара состоит в том, что при изменении температуры пара в закрытом сосуде (или при изменении объема при постоянной температуре) меняется масса пара. Жидкость частично превращается в пар, или, напротив, пар частично конденсируе тся. С идеальным газом ничего подобного не происходит.). Когда вся жидкость испарится, пар при дальнейшем нагревании перестанет быть насыщенным и его давление при постоянном объеме будет возраст ать прямо пропорционально абсолютной температуре (см. рис., участок кривой 23).

Кипение.

Кипение – это интенсивный переход вещества из жидкого состояния в газообразное, происходящее по всему объему жидкости (а не только с ее поверхности). (Конденсация – обратный процесс.) По мере увеличения температуры жидкости интенсивность испарения увеличивается. Наконец, жидкость начинает кипеть. При кипении по всему объему жидкости образуются быстро растущие пузырьки пара, которые всплывают на поверхность. Температура кипения жидкости остается постоянной. Это происходит потому, что вся подводимая к жидкости энергия расходуется на превращение ее в пар. При каких условиях начинается кипение?

В жидкости всегда присутствуют растворенные газы, выделяющиеся на дне и стенках сосуда, а также на взвешенных в жидкости пылинках, которые являются центрами парообразования. Пары жидкости, находящиеся внутри пузырьков, являются насыщенными. С увеличением температуры давление насыщенных паров возрастает и пузырьки увеличиваются в размерах. Под действием выталкивающей силы они всплывают вверх. Если верхние слои жидкости имеют более низкую температуру, то в этих слоях происходит конденсация пара в пузырьках. Давление стремительно падает, и пузырьки захлопываются. Захлопывание происходит настолько быстро, что стенки пузырька, сталкиваясь, производят нечто вроде взрыва. Множество таких микровзрывов создает характерный шум. Когда жидкость достаточно прогреется, пузырьки перестанут захлопываться и всплывут на поверхность. Жидкость закипит. Понаблюдайте внимательно за чайником на плите. Вы обнаружите, что перед закипанием он почти перестает шуметь. Зависимость давления насыщенного пара от температуры объясняет, почему температура кипения жидкости зависит от давления на ее поверхность. Пузырек пара может расти, когда давление насыщенного пара внутри него немного превосходит давление в жидкости, которое складывается из давления воздуха на поверхность жидкости (внешнее давление) и гидростатического давления столба жидкости. Кипение начинается при температуре, при которой давление насыщенного пара в пузырьках сравнивается с давлением в жидкости. Чем больше внешнее давление, тем выше температура кипения. И наоборот, уменьшая внешнее давление, мы тем самым понижаем температуру кипения. Откачивая насосом воздух и пары воды из колбы, можно заставить воду кипеть при комнатной температуре. У каждой жидкости своя температура кипения (которая остается постоянной, пока вся жидкость не выкипит), которая зависит от давления ее насыщенного пара. Чем выше давление насыщенного пара, тем ниже температура кипения жидкости.


Влажность воздуха и ее измерение.

В окружающем нас воздухе практически всегда находится некоторое количество водяных паров. Влажность воздуха зависит от количества водяного пара, содержащегося в нем. Сырой воздух содержит больший процент молекул воды, чем сухой. Боль шое значение имеет относительная влажность воздуха, сообщения о которой каждый день звучат в сводках метеопрогноза.


Отно сительная влажность - это отношение плотности водяного пара, содержащегося в воздухе, к плотности насыщенного пара при данной температуре, выраженное в процентах (показывает, насколько водяной пар в воздухе близок к насыщению).


Точка росы

Сухость или влажность воздуха зависит от того, насколько близок его водяной пар к насыщению. Если влажный воздух охлаждать, то находящийся в нем пар можно довести до насыщения, и далее он будет конденсироваться. Признаком того, что пар насытился является появление первых капель сконденсировавшейся жидкости - росы. Температура, при которой пар, находящийся в воздухе, становится насыщенным, называется точкой росы. Точка росы также характеризует влажность воздуха. Примеры: выпадение росы под утро, запотевание холодного стекла, если на него подышать, образование капли воды на холодной водопроводной трубе, сырость в подвалах домов. Для измерения влажности воздуха используют измерительные приборы - гигрометры. Существуют несколько видов гигрометров, но основные: волосной и психрометрический.

После закипания температура воды перестает расти и остается неизменной до полного испарения. Парообразование - это процесс перехода из жидкого состояния в пар, который имеет тот же температурный показатель, что и кипящая жидкость. Это испарение получило название насыщенный пар. Когда вся вода испаряется, любое последующее добавление тепла повышает температуру. Нагретый пар за уровнем насыщенного называется перегретым. В промышленности обычно используется насыщенный пар для отопления, приготовления пищи, сушки или других процедур. Перегретый используется исключительно для турбин. Различные типы пара имеют разные энергии обменного потенциала и это оправдывает их применение в совершенно различных целях.

Пар как одно из трех физических состояний

Лучше понять свойства пара может помочь понимание общего молекулярного и атомарного строения вещества, а также применение этого знания касательно льда, воды и пара. Молекула - это наименьшая единица любого элемента или соединения. Она, в свою очередь, состоит из еще более мелких частиц, называемых атомами, которые определяют базовые элементы, такие как водород и кислород. Конкретные комбинации этих атомарных элементов обеспечивают соединение веществ. Одно из таких соединений представлено химической формулой Н 2 О, молекулы которого состоят из 2 атомов водорода и 1 атома кислорода. Углерода имеется также в изобилии, это ключевой компонент всех органических веществ. Большинство минеральных веществ могут существовать в трех физических состояниях (твердое тело, жидкость и пар), которые называются фазами.

Процесс образования пара

Когда температура воды приближается к точке кипения, некоторые молекулы получают достаточное количество кинетической энергии для достижения скоростей, которые позволяют им на мгновение отделиться от жидкости в пространстве над поверхностью, прежде чем вернуться. Дальнейшее нагревание вызывает большее возбуждение и число молекул, желающих покинуть жидкость, увеличивается. При атмосферном давлении температура насыщения составляет 100 °С. Пар с температурой кипения при таком давлении носит название сухой насыщенный пар. Как фазовый переход от льда к воде, процесс испарения является также обратимым (конденсация). Критическая точка - это наибольшая температура, при которой вода может находиться в жидком состоянии. Выше этой точки пар может рассматриваться как газ. Газообразное состояние является подобием диффузного, в котором молекулы имеют почти неограниченную возможность движения.


Взаимосвязь переменных

При заданной температуре существует определенное давление пара, которое существует в равновесии с жидкой водой. Если этот показатель растет, пар перегревается и называется сухим. Существует взаимосвязь между давлением и температурой: зная одно значение, можно определить другое. Состояние пара определяется тремя переменными: давлением, температурой и объемом. Сухой насыщенный пар - это состояние, когда пар и вода могут присутствовать одновременно. Иными словами, это происходит тогда, когда скорость парообразования равна скорости конденсации.

Насыщенный пар и его свойства

При обсуждении свойств насыщенного пара его часто сравнивают с иде-аль-ным газом. Есть ли у них что-то общее или это простое заблуждение? Во-первых, при неизменном уровне тем-пе-ра-ту-ры плот-ность не находится в за-ви-симости от объ-е-ма. Визуально это можно себе представить следующим образом: нужно визуально уменьшить объем емкости с паром, не изменяя при этом температурные показатели. Число конденсируемых мо-ле-кул будет пре-восходить число испаряющихся, а пар будет возвращаться в со-сто-я-ние баланса. В результате плот-ность будет неизменным параметром. Во-вторых, такие характеристики, как дав-ле-ние и объ-е-м, не зависят друг от друга. В-третьих, учитывая неизменность объ-е-мных характеристик, плот-ность молекул возрастает, когда растет тем-пе-ра-ту-ра, и становится меньше, когда она понижается. На самом деле, при нагревании вода начинает испаряться быстрее. Баланс в этом случае будет нарушен и не будет восстановлен до тех пор, пока плот-ность пара не вернется на прежние позиции. При конденсации, наоборот, плотность насыщенного пара будет уменьшаться. В отличие от идеального газа, насыщенный пар нельзя назвать замкнутой системой, так как он постоянно контактирует с водой.

Преимущества в сфере отопления

Насыщенным называется чистый пар в непосредственном контакте с жидкой водой. Он обладает многими характеристиками, которые делают его отличным источником тепловой энергии, особенно это касается высоких температур (выше 100 °C). Некоторые из них:


Различные виды пара

Пар - это газообразная фаза воды. Он использует тепло во время своего образования и выделяет большое количество тепла после этого. Следовательно, он
может быть использован в качестве рабочего вещества для тепловых двигателей. Известны следующие состояния: влажный насыщенный, сухой насыщенный и перегретый. Насыщенный пар предпочтительнее перегретого пара в качестве теплоносителя в теплообменниках. Когда он выбрасывается в атмосферу из труб, часть его конденсируется, образуются облака белого влажного испарения, содержащего мельчайшие капельки воды. Перегретый пар не будет подвержен конденсации, даже при вступлении в непосредственный контакт с атмосферой. В перегретом состоянии он будет иметь большую теплоотдачу за счет ускорения движения молекул и меньшей плотности. Наличие влаги вызывает осаждение, коррозию и снижению продолжительности службы котлов или другого теплообменного оборудования. Следовательно, сухой пар является предпочтительным, поскольку он вырабатывает больше энергии и не вызывает коррозии.

Сухой и насыщенный: в чем противоречие

Многие путаются с терминами "сухой" и "насыщенный". Как может быть нечто одновременно и тем и другим? Ответ кроется в терминологии, которую мы используем. Термин «сухой» связывают с отсутствием влаги, то есть «не мокрый». «Насыщенный» означает "замоченный", "промокший", "затопленный", "заваленный" и так далее. Все это, казалось бы, подтверждает противоречие. Однако в паровой инженерии термин «насыщенный» имеет другое значение и в данном контексте означает состояние, при котором происходит кипение. Таким образом, температура, при которой происходит кипение, известна технически как температуры насыщения. Сухой пар в данном контексте не имеет в себе влаги. Если понаблюдать за кипящим чайником, то можно увидеть выходящее из носика чайника белое испарение. На самом деле, это смесь сухого бесцветного пара и влажного пара, содержащего в себе капельки воды, которые отражают свет и окрашиваются в белый цвет. Поэтому термин «сухой насыщенный пар» означает, что пар обезвожен и не перегрет. Свободное от частиц жидкости, это вещество в газообразном состоянии, которое не следуют общим газовым законам.

При испарении одновременно с переходом молекул из жидкости в пар происходит и обратный процесс. Беспорядочно двигаясь над поверхностью жидкости, часть молекул, покинувших ее, снова возвращается в жидкость.

Давление насыщенного пара.

При сжатии насыщенного пара, температура которого под-держивается постоянной, равновесие сначала начнет нарушаться: плотность пара возрастет, и вследствие этого из газа в жидкость будет переходить больше молекул, чем из жидкости в газ; продолжаться это будет до тех пор, пока концентрация пара в новом объеме не станет прежней, соответствующей концентрации насыщенного пара при данной температуре (и равновесие восста-новится). Объясняется это тем, что число молекул, покидающих жидкость за единицу времени, зависит только от температуры.

Итак, концентрация молекул насыщенного пара при постоянной температуре не зависит от его объема.

Поскольку давление газа пропорционально концентрации его молекул, то и давление насыщенного пара не зависит от занимаемого им объема. Давление р 0 , при котором жидкость находит-ся в равновесии со своим паром, называют давлением насыщенного пара .

При сжатии насыщенного пара большая его часть переходит в жидкое состояние. Жидкость занимает меньший объем, чем пар той же массы. В результате объем пара при неизменной его плотности уменьшается.

Зависимость давления насыщенного пара от температуры.

Для идеального газа справедлива линейная зависимость давления от температуры при постоянном объеме. Применительно к насыщенному пару с давлением р 0 эта зависимость выражается равенством:

p 0 =nkT.

Так как давление насыщенного пара не зависит от объема, то, следова-тельно, оно зависит только от температуры.

Экспериментально определенная зависимость p 0 (T) отличается от зави-симости (p 0 =nkT ) для идеального газа.

С увеличением температуры давление насыщенного пара растет быстрее, чем давление идеального га-за (участок кривой АВ на рисунке). Это становится особенно очевидным, если провести изохору через точку A (пунктирная прямая). Происходит это потому, что при нагревании жидкости часть ее превращается в пар, и плотность пара растет. Поэтому, согласно формуле (p 0 =nkT ), давление насы-щенного пара растет не только в результате повышения температуры жидкости, но и вследствие увеличения концентрации молекул (плотности) пара. Главное различие в поведении идеального газа и насыщенного пара заключается в из-менении массы пара при изменении температуры при неизменном объеме (в закрытом сосуде) или при изменении объема при постоянной температуре. С идеальным газом ничего подобного происходить не может (молекулярно-кинетическая теория идеального газа не предусматривает фазового перехода газа в жидкость).

После испарения всей жидкости поведение пара будет соответствовать поведению идеального газа (участок ВС кривой на рисунке выше).

Ненасыщенный пар.

Если в пространстве, содержащем пары какой-либо жидкости, может происходить дальнейшее испарение этой жидкости, то пар, находящийся в этом пространстве, является ненасыщенным.

Пар, не находящийся в состоянии равновесия со своей жидкостью, называется ненасыщенным.

Ненасыщенный пар можно простым сжатием превратить в жидкость. Как только это превращение началось, пар, находящийся в равновесии с жидкостью, становится насыщенным.