Mga panuntunan para sa pagkalkula ng logarithms. Paglutas ng mga logarithmic equation - huling aralin

pangunahing katangian.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

magkatulad na batayan

Log6 4 + log6 9.

Ngayon pasimplehin natin ng kaunti ang gawain.

Mga halimbawa ng paglutas ng logarithms

Paano kung ang batayan o argumento ng isang logarithm ay isang kapangyarihan? Pagkatapos ang exponent ng degree na ito ay maaaring alisin mula sa sign ng logarithm ayon sa mga sumusunod na patakaran:

Siyempre, ang lahat ng mga patakarang ito ay may katuturan kung ang ODZ ng logarithm ay sinusunod: a > 0, a ≠ 1, x >

Gawain. Hanapin ang kahulugan ng expression:

Paglipat sa isang bagong pundasyon

Hayaang ibigay ang logarithm logax. Pagkatapos ay para sa anumang bilang c tulad na c > 0 at c ≠ 1, ang pagkakapantay-pantay ay totoo:

Gawain. Hanapin ang kahulugan ng expression:

Tingnan din ang:


Mga pangunahing katangian ng logarithm

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Ang exponent ay 2.718281828…. Upang matandaan ang exponent, maaari mong pag-aralan ang panuntunan: ang exponent ay katumbas ng 2.7 at dalawang beses sa taon ng kapanganakan ni Leo Nikolaevich Tolstoy.

Mga pangunahing katangian ng logarithms

Ang pag-alam sa panuntunang ito, malalaman mo ang eksaktong halaga ng exponent at ang petsa ng kapanganakan ni Leo Tolstoy.


Mga halimbawa para sa logarithms

Mga expression ng logarithm

Halimbawa 1.
A). x=10ac^2 (a>0,c>0).

Gamit ang mga katangian 3.5 kinakalkula namin

2.

3.

4. saan .



Halimbawa 2. Hanapin ang x kung


Halimbawa 3. Hayaang ibigay ang halaga ng logarithms

Kalkulahin ang log(x) kung




Mga pangunahing katangian ng logarithms

Ang mga logarithm, tulad ng anumang mga numero, ay maaaring idagdag, ibawas at baguhin sa lahat ng paraan. Ngunit dahil ang logarithms ay hindi eksaktong ordinaryong mga numero, may mga panuntunan dito, na tinatawag pangunahing katangian.

Tiyak na kailangan mong malaman ang mga patakarang ito - hindi isang solong seryosong problema sa logarithmic ang malulutas nang wala ang mga ito. Bilang karagdagan, napakakaunti sa kanila - maaari mong matutunan ang lahat sa isang araw. Kaya simulan na natin.

Pagdaragdag at pagbabawas ng mga logarithms

Isaalang-alang ang dalawang logarithms na may parehong base: logax at logay. Pagkatapos ay maaari silang idagdag at ibawas, at:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Kaya, ang kabuuan ng logarithm ay katumbas ng logarithm ng produkto, at ang pagkakaiba ay katumbas ng logarithm ng quotient. Mangyaring tandaan: pangunahing punto dito - magkatulad na batayan. Kung ang mga dahilan ay iba, ang mga patakarang ito ay hindi gumagana!

Tutulungan ka ng mga formula na ito na kalkulahin ang isang logarithmic expression kahit na ang mga indibidwal na bahagi nito ay hindi isinasaalang-alang (tingnan ang aralin na "Ano ang logarithm"). Tingnan ang mga halimbawa at tingnan:

Dahil ang logarithms ay may parehong mga base, ginagamit namin ang sum formula:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Gawain. Hanapin ang halaga ng expression: log2 48 − log2 3.

Ang mga base ay pareho, ginagamit namin ang formula ng pagkakaiba:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Gawain. Hanapin ang halaga ng expression: log3 135 − log3 5.

Muli ang mga base ay pareho, kaya mayroon kaming:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Tulad ng nakikita mo, ang orihinal na mga expression ay binubuo ng "masamang" logarithms, na hindi hiwalay na kinakalkula. Ngunit pagkatapos ng mga pagbabago, ganap na normal na mga numero ang nakuha. Marami ang binuo sa katotohanang ito mga pagsubok. Oo, ang mga ekspresyong tulad ng pagsubok ay inaalok sa lahat ng kaseryosohan (kung minsan ay halos walang pagbabago) sa Pinag-isang Estado na Pagsusuri.

Pagkuha ng exponent mula sa logarithm

Madaling makita na ang huling tuntunin ay sumusunod sa unang dalawa. Ngunit mas mahusay na tandaan ito pa rin - sa ilang mga kaso ay makabuluhang bawasan nito ang dami ng mga kalkulasyon.

Siyempre, ang lahat ng mga patakarang ito ay may katuturan kung ang ODZ ng logarithm ay sinusunod: a > 0, a ≠ 1, x > 0. At isa pang bagay: matutong ilapat ang lahat ng mga formula hindi lamang mula kaliwa hanggang kanan, kundi pati na rin sa kabaligtaran , ibig sabihin. Maaari mong ipasok ang mga numero bago mag-sign ang logarithm sa logarithm mismo. Ito ang madalas na kinakailangan.

Gawain. Hanapin ang halaga ng expression: log7 496.

Tanggalin natin ang antas sa argumento gamit ang unang formula:
log7 496 = 6 log7 49 = 6 2 = 12

Gawain. Hanapin ang kahulugan ng expression:

Tandaan na ang denominator ay naglalaman ng logarithm, na ang base at argumento ay eksaktong kapangyarihan: 16 = 24; 49 = 72. Mayroon kaming:

Sa tingin ko ang huling halimbawa ay nangangailangan ng ilang paglilinaw. Saan napunta ang logarithms? Hanggang sa pinakahuling sandali ay nagtatrabaho lamang kami sa denominator.

Mga formula ng logarithm. Mga halimbawa ng solusyon sa Logarithms.

Iniharap namin ang base at argumento ng logarithm na nakatayo doon sa anyo ng mga kapangyarihan at kinuha ang mga exponents - nakakuha kami ng isang "tatlong palapag" na bahagi.

Ngayon tingnan natin ang pangunahing bahagi. Ang numerator at denominator ay naglalaman ng parehong numero: log2 7. Dahil ang log2 7 ≠ 0, maaari nating bawasan ang fraction - 2/4 ay mananatili sa denominator. Ayon sa mga tuntunin ng aritmetika, ang apat ay maaaring ilipat sa numerator, na kung ano ang ginawa. Ang naging resulta ay ang sagot: 2.

Paglipat sa isang bagong pundasyon

Sa pagsasalita tungkol sa mga patakaran para sa pagdaragdag at pagbabawas ng mga logarithms, partikular kong binigyang-diin na gumagana lamang ang mga ito sa parehong mga base. Paano kung magkaiba ang mga dahilan? Paano kung hindi sila eksaktong mga kapangyarihan ng parehong bilang?

Ang mga formula para sa paglipat sa isang bagong pundasyon ay sumagip. Bumalangkas tayo sa anyo ng isang teorama:

Hayaang ibigay ang logarithm logax. Pagkatapos ay para sa anumang bilang c tulad na c > 0 at c ≠ 1, ang pagkakapantay-pantay ay totoo:

Sa partikular, kung itinakda namin ang c = x, makakakuha kami ng:

Mula sa pangalawang pormula ay sumusunod na ang base at argumento ng logarithm ay maaaring palitan, ngunit sa kasong ito ang buong expression ay "ibinalik", i.e. lumalabas ang logarithm sa denominator.

Ang mga formula na ito ay bihirang makita sa mga ordinaryong numerical expression. Posibleng suriin kung gaano kaginhawa ang mga ito kapag nilulutas ang mga logarithmic equation at hindi pagkakapantay-pantay.

Gayunpaman, may mga problema na hindi malulutas sa lahat maliban sa paglipat sa isang bagong pundasyon. Tingnan natin ang ilan sa mga ito:

Gawain. Hanapin ang halaga ng expression: log5 16 log2 25.

Tandaan na ang mga argumento ng parehong logarithms ay naglalaman ng eksaktong mga kapangyarihan. Kunin natin ang mga tagapagpahiwatig: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Ngayon ay "baligtarin" natin ang pangalawang logarithm:

Dahil ang produkto ay hindi nagbabago kapag muling inaayos ang mga kadahilanan, mahinahon naming pinarami ang apat at dalawa, at pagkatapos ay hinarap ang mga logarithms.

Gawain. Hanapin ang halaga ng expression: log9 100 lg 3.

Ang batayan at argumento ng unang logarithm ay eksaktong kapangyarihan. Isulat natin ito at alisin ang mga tagapagpahiwatig:

Ngayon, alisin natin ang decimal logarithm sa pamamagitan ng paglipat sa isang bagong base:

Pangunahing logarithmic na pagkakakilanlan

Kadalasan sa proseso ng solusyon ay kinakailangan upang kumatawan sa isang numero bilang isang logarithm sa isang naibigay na base. Sa kasong ito, ang mga sumusunod na formula ay makakatulong sa amin:

Sa unang kaso, ang numero n ay nagiging exponent sa argumento. Ang numero n ay maaaring maging anumang bagay, dahil ito ay isang logarithm value lamang.

Ang pangalawang formula ay talagang isang paraphrased na kahulugan. Yan ang tawag dito: .

Sa katunayan, ano ang mangyayari kung ang numero b ay itinaas sa ganoong kapangyarihan na ang bilang b sa kapangyarihang ito ay nagbibigay ng bilang na a? Iyan ay tama: ang resulta ay ang parehong numero a. Basahin muli ang talatang ito nang mabuti - maraming tao ang natigil dito.

Tulad ng mga formula para sa paglipat sa isang bagong base, ang pangunahing logarithmic identity ay minsan ang tanging posibleng solusyon.

Gawain. Hanapin ang kahulugan ng expression:

Tandaan na ang log25 64 = log5 8 - kinuha lamang ang parisukat mula sa base at argumento ng logarithm. Isinasaalang-alang ang mga patakaran para sa pagpaparami ng mga kapangyarihan na may parehong base, makakakuha tayo ng:

Kung sinuman ang hindi nakakaalam, ito ay isang tunay na gawain mula sa Unified State Exam :)

Logarithmic unit at logarithmic zero

Sa konklusyon, magbibigay ako ng dalawang pagkakakilanlan na halos hindi matatawag na mga katangian - sa halip, ang mga ito ay mga kahihinatnan ng kahulugan ng logarithm. Patuloy silang lumilitaw sa mga problema at, nakakagulat, lumikha ng mga problema kahit para sa mga "advanced" na mga mag-aaral.

  1. logaa = 1 ay. Tandaan minsan at para sa lahat: ang logarithm sa anumang base a ng base na iyon mismo ay katumbas ng isa.
  2. ang log 1 = 0 ay. Ang base a ay maaaring anuman, ngunit kung ang argumento ay naglalaman ng isa, ang logarithm ay katumbas ng zero! Dahil ang a0 = 1 ay isang direktang bunga ng kahulugan.

Iyon ang lahat ng mga pag-aari. Siguraduhing magsanay sa pagsasabuhay ng mga ito! I-download ang cheat sheet sa simula ng aralin, i-print ito, at lutasin ang mga problema.

Tingnan din ang:

Ang logarithm ng b sa base a ay nagsasaad ng expression. Upang kalkulahin ang logarithm ay nangangahulugan na makahanap ng isang kapangyarihan x () kung saan ang pagkakapantay-pantay ay nasiyahan

Mga pangunahing katangian ng logarithm

Kinakailangang malaman ang mga katangian sa itaas, dahil halos lahat ng mga problema at mga halimbawa na may kaugnayan sa logarithms ay nalutas sa kanilang batayan. Ang natitirang mga kakaibang katangian ay maaaring makuha sa pamamagitan ng matematikal na pagmamanipula gamit ang mga formula na ito

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Kapag kinakalkula ang formula para sa kabuuan at pagkakaiba ng mga logarithms (3.4) madalas kang nakakaharap. Ang natitira ay medyo kumplikado, ngunit sa isang bilang ng mga gawain sila ay kailangang-kailangan para sa pagpapasimple ng mga kumplikadong expression at pagkalkula ng kanilang mga halaga.

Mga karaniwang kaso ng logarithms

Ang ilan sa mga pinakakaraniwang logarithms ay ang mga kung saan ang base ay katumbas ng sampu, exponential o dalawa.
Ang logarithm sa base sampu ay karaniwang tinatawag na decimal logarithm at simpleng tinutukoy ng lg(x).

Malinaw sa recording na ang mga basic ay hindi nakasulat sa recording. Halimbawa

Ang natural na logarithm ay isang logarithm na ang base ay isang exponent (na tinutukoy ng ln(x)).

Ang exponent ay 2.718281828…. Upang matandaan ang exponent, maaari mong pag-aralan ang panuntunan: ang exponent ay katumbas ng 2.7 at dalawang beses sa taon ng kapanganakan ni Leo Nikolaevich Tolstoy. Ang pag-alam sa panuntunang ito, malalaman mo ang eksaktong halaga ng exponent at ang petsa ng kapanganakan ni Leo Tolstoy.

At isa pang mahalagang logarithm sa base ng dalawa ay tinutukoy ng

Ang derivative ng logarithm ng isang function ay katumbas ng isang hinati ng variable

Ang integral o antiderivative logarithm ay tinutukoy ng relasyon

Ang ibinigay na materyal ay sapat para sa iyo upang malutas ang isang malawak na klase ng mga problema na may kaugnayan sa logarithms at logarithms. Upang matulungan kang maunawaan ang materyal, magbibigay lamang ako ng ilang karaniwang mga halimbawa mula sa kurikulum ng paaralan at mga unibersidad.

Mga halimbawa para sa logarithms

Mga expression ng logarithm

Halimbawa 1.
A). x=10ac^2 (a>0,c>0).

Gamit ang mga katangian 3.5 kinakalkula namin

2.
Sa pamamagitan ng pag-aari ng pagkakaiba ng logarithms mayroon tayo

3.
Gamit ang mga katangian 3.5 nahanap namin

4. saan .

Ang isang tila kumplikadong expression ay pinasimple upang mabuo gamit ang isang bilang ng mga panuntunan

Paghahanap ng mga halaga ng logarithm

Halimbawa 2. Hanapin ang x kung

Solusyon. Para sa pagkalkula, nalalapat kami sa huling termino 5 at 13 na mga katangian

Inilagay namin ito sa talaan at nagdadalamhati

Dahil ang mga base ay pantay, tinutumbasan namin ang mga expression

Logarithms. Entry level.

Hayaang ibigay ang halaga ng logarithms

Kalkulahin ang log(x) kung

Solusyon: Kumuha tayo ng logarithm ng variable upang isulat ang logarithm sa pamamagitan ng kabuuan ng mga termino nito


Ito ay simula pa lamang ng ating pagkakakilala sa logarithms at sa kanilang mga katangian. Magsanay ng mga kalkulasyon, pagyamanin ang iyong mga praktikal na kasanayan - malapit mo nang kailanganin ang kaalaman na makukuha mo upang malutas ang mga logarithmic equation. Ang pagkakaroon ng pag-aaral ng mga pangunahing pamamaraan para sa paglutas ng mga naturang equation, palawakin namin ang iyong kaalaman para sa isa pa mahalagang paksa- mga hindi pagkakapantay-pantay ng logarithmic...

Mga pangunahing katangian ng logarithms

Ang mga logarithm, tulad ng anumang mga numero, ay maaaring idagdag, ibawas at baguhin sa lahat ng paraan. Ngunit dahil ang logarithms ay hindi eksaktong ordinaryong mga numero, may mga panuntunan dito, na tinatawag pangunahing katangian.

Tiyak na kailangan mong malaman ang mga patakarang ito - hindi isang solong seryosong problema sa logarithmic ang malulutas nang wala ang mga ito. Bilang karagdagan, napakakaunti sa kanila - maaari mong matutunan ang lahat sa isang araw. Kaya simulan na natin.

Pagdaragdag at pagbabawas ng mga logarithms

Isaalang-alang ang dalawang logarithms na may parehong base: logax at logay. Pagkatapos ay maaari silang idagdag at ibawas, at:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Kaya, ang kabuuan ng logarithm ay katumbas ng logarithm ng produkto, at ang pagkakaiba ay katumbas ng logarithm ng quotient. Mangyaring tandaan: ang pangunahing punto dito ay magkatulad na batayan. Kung ang mga dahilan ay iba, ang mga patakarang ito ay hindi gumagana!

Tutulungan ka ng mga formula na ito na kalkulahin ang isang logarithmic expression kahit na ang mga indibidwal na bahagi nito ay hindi isinasaalang-alang (tingnan ang aralin na "Ano ang logarithm"). Tingnan ang mga halimbawa at tingnan:

Gawain. Hanapin ang halaga ng expression: log6 4 + log6 9.

Dahil ang logarithms ay may parehong mga base, ginagamit namin ang sum formula:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Gawain. Hanapin ang halaga ng expression: log2 48 − log2 3.

Ang mga base ay pareho, ginagamit namin ang formula ng pagkakaiba:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Gawain. Hanapin ang halaga ng expression: log3 135 − log3 5.

Muli ang mga base ay pareho, kaya mayroon kaming:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Tulad ng nakikita mo, ang orihinal na mga expression ay binubuo ng "masamang" logarithms, na hindi hiwalay na kinakalkula. Ngunit pagkatapos ng mga pagbabago, ganap na normal na mga numero ang nakuha. Maraming pagsubok ang nakabatay sa katotohanang ito. Oo, ang mga ekspresyong tulad ng pagsubok ay inaalok sa lahat ng kaseryosohan (kung minsan ay halos walang pagbabago) sa Pinag-isang Estado na Pagsusuri.

Pagkuha ng exponent mula sa logarithm

Ngayon pasimplehin natin ng kaunti ang gawain. Paano kung ang batayan o argumento ng isang logarithm ay isang kapangyarihan? Pagkatapos ang exponent ng degree na ito ay maaaring alisin mula sa sign ng logarithm ayon sa mga sumusunod na patakaran:

Madaling makita na ang huling tuntunin ay sumusunod sa unang dalawa. Ngunit mas mahusay na tandaan ito pa rin - sa ilang mga kaso ay makabuluhang bawasan nito ang dami ng mga kalkulasyon.

Siyempre, ang lahat ng mga patakarang ito ay may katuturan kung ang ODZ ng logarithm ay sinusunod: a > 0, a ≠ 1, x > 0. At isa pang bagay: matutong ilapat ang lahat ng mga formula hindi lamang mula kaliwa hanggang kanan, kundi pati na rin sa kabaligtaran , ibig sabihin. Maaari mong ipasok ang mga numero bago mag-sign ang logarithm sa logarithm mismo.

Paano malutas ang mga logarithms

Ito ang madalas na kinakailangan.

Gawain. Hanapin ang halaga ng expression: log7 496.

Tanggalin natin ang antas sa argumento gamit ang unang formula:
log7 496 = 6 log7 49 = 6 2 = 12

Gawain. Hanapin ang kahulugan ng expression:

Tandaan na ang denominator ay naglalaman ng logarithm, na ang base at argumento ay eksaktong kapangyarihan: 16 = 24; 49 = 72. Mayroon kaming:

Sa tingin ko ang huling halimbawa ay nangangailangan ng ilang paglilinaw. Saan napunta ang logarithms? Hanggang sa pinakahuling sandali ay nagtatrabaho lamang kami sa denominator. Iniharap namin ang base at argumento ng logarithm na nakatayo doon sa anyo ng mga kapangyarihan at kinuha ang mga exponents - nakakuha kami ng isang "tatlong palapag" na bahagi.

Ngayon tingnan natin ang pangunahing bahagi. Ang numerator at denominator ay naglalaman ng parehong numero: log2 7. Dahil ang log2 7 ≠ 0, maaari nating bawasan ang fraction - 2/4 ay mananatili sa denominator. Ayon sa mga tuntunin ng aritmetika, ang apat ay maaaring ilipat sa numerator, na kung ano ang ginawa. Ang naging resulta ay ang sagot: 2.

Paglipat sa isang bagong pundasyon

Sa pagsasalita tungkol sa mga patakaran para sa pagdaragdag at pagbabawas ng mga logarithms, partikular kong binigyang-diin na gumagana lamang ang mga ito sa parehong mga base. Paano kung magkaiba ang mga dahilan? Paano kung hindi sila eksaktong mga kapangyarihan ng parehong bilang?

Ang mga formula para sa paglipat sa isang bagong pundasyon ay sumagip. Bumalangkas tayo sa anyo ng isang teorama:

Hayaang ibigay ang logarithm logax. Pagkatapos ay para sa anumang bilang c tulad na c > 0 at c ≠ 1, ang pagkakapantay-pantay ay totoo:

Sa partikular, kung itinakda namin ang c = x, makakakuha kami ng:

Mula sa pangalawang pormula ay sumusunod na ang base at argumento ng logarithm ay maaaring palitan, ngunit sa kasong ito ang buong expression ay "ibinalik", i.e. lumalabas ang logarithm sa denominator.

Ang mga formula na ito ay bihirang makita sa mga ordinaryong numerical expression. Posibleng suriin kung gaano kaginhawa ang mga ito kapag nilulutas ang mga logarithmic equation at hindi pagkakapantay-pantay.

Gayunpaman, may mga problema na hindi malulutas sa lahat maliban sa paglipat sa isang bagong pundasyon. Tingnan natin ang ilan sa mga ito:

Gawain. Hanapin ang halaga ng expression: log5 16 log2 25.

Tandaan na ang mga argumento ng parehong logarithms ay naglalaman ng eksaktong mga kapangyarihan. Kunin natin ang mga tagapagpahiwatig: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Ngayon ay "baligtarin" natin ang pangalawang logarithm:

Dahil ang produkto ay hindi nagbabago kapag muling inaayos ang mga kadahilanan, mahinahon naming pinarami ang apat at dalawa, at pagkatapos ay hinarap ang mga logarithms.

Gawain. Hanapin ang halaga ng expression: log9 100 lg 3.

Ang batayan at argumento ng unang logarithm ay eksaktong kapangyarihan. Isulat natin ito at alisin ang mga tagapagpahiwatig:

Ngayon, alisin natin ang decimal logarithm sa pamamagitan ng paglipat sa isang bagong base:

Pangunahing logarithmic na pagkakakilanlan

Kadalasan sa proseso ng solusyon ay kinakailangan upang kumatawan sa isang numero bilang isang logarithm sa isang naibigay na base. Sa kasong ito, ang mga sumusunod na formula ay makakatulong sa amin:

Sa unang kaso, ang numero n ay nagiging exponent sa argumento. Ang numero n ay maaaring maging anumang bagay, dahil ito ay isang logarithm value lamang.

Ang pangalawang formula ay talagang isang paraphrased na kahulugan. Yan ang tawag dito: .

Sa katunayan, ano ang mangyayari kung ang numero b ay itinaas sa ganoong kapangyarihan na ang bilang b sa kapangyarihang ito ay nagbibigay ng bilang na a? Iyan ay tama: ang resulta ay ang parehong numero a. Basahin muli ang talatang ito nang mabuti - maraming tao ang natigil dito.

Tulad ng mga formula para sa paglipat sa isang bagong base, ang pangunahing logarithmic identity ay minsan ang tanging posibleng solusyon.

Gawain. Hanapin ang kahulugan ng expression:

Tandaan na ang log25 64 = log5 8 - kinuha lamang ang parisukat mula sa base at argumento ng logarithm. Isinasaalang-alang ang mga patakaran para sa pagpaparami ng mga kapangyarihan na may parehong base, makakakuha tayo ng:

Kung sinuman ang hindi nakakaalam, ito ay isang tunay na gawain mula sa Unified State Exam :)

Logarithmic unit at logarithmic zero

Sa konklusyon, magbibigay ako ng dalawang pagkakakilanlan na halos hindi matatawag na mga katangian - sa halip, ang mga ito ay mga kahihinatnan ng kahulugan ng logarithm. Patuloy silang lumilitaw sa mga problema at, nakakagulat, lumikha ng mga problema kahit para sa mga "advanced" na mga mag-aaral.

  1. logaa = 1 ay. Tandaan minsan at para sa lahat: ang logarithm sa anumang base a ng base na iyon mismo ay katumbas ng isa.
  2. ang log 1 = 0 ay. Ang base a ay maaaring anuman, ngunit kung ang argumento ay naglalaman ng isa, ang logarithm ay katumbas ng zero! Dahil ang a0 = 1 ay isang direktang bunga ng kahulugan.

Iyon ang lahat ng mga pag-aari. Siguraduhing magsanay sa pagsasabuhay ng mga ito! I-download ang cheat sheet sa simula ng aralin, i-print ito, at lutasin ang mga problema.

(mula sa Greek λόγος - “salita”, “relasyon” at ἀριθμός - “numero”) mga numero b batay sa a(log α b) ay tinatawag na ganoong numero c, At b= isang c, ibig sabihin, records log α b=c At b=ac ay katumbas. Makatuwiran ang logarithm kung a > 0, a ≠ 1, b > 0.

Sa madaling salita logarithm mga numero b batay sa A binabalangkas bilang isang exponent kung saan dapat itaas ang isang numero a para makuha ang numero b(umiiral lamang ang logarithm para sa mga positibong numero).

Mula sa pagbabalangkas na ito ay sumusunod na ang pagkalkula x= log α b, ay katumbas ng paglutas ng equation a x =b.

Halimbawa:

log 2 8 = 3 dahil 8 = 2 3 .

Bigyang-diin natin na ang ipinahiwatig na pagbabalangkas ng logarithm ay ginagawang posible upang agad na matukoy halaga ng logarithm, kapag ang numero sa ilalim ng logarithm sign ay kumikilos bilang isang tiyak na kapangyarihan ng base. Sa katunayan, ang pagbabalangkas ng logarithm ay ginagawang posible upang bigyang-katwiran na kung b=a c, pagkatapos ay ang logarithm ng numero b batay sa a katumbas Sa. Malinaw din na ang paksa ng logarithms ay malapit na nauugnay sa paksa kapangyarihan ng isang numero.

Ang pagkalkula ng logarithm ay tinatawag logarithm. Ang Logarithm ay ang matematikal na operasyon ng pagkuha ng logarithm. Kapag kumukuha ng logarithms, ang mga produkto ng mga salik ay binago sa kabuuan ng mga termino.

Potentiation ay ang inverse mathematical operation ng logarithm. Sa panahon ng potentiation, ang isang naibigay na base ay itinataas sa antas ng pagpapahayag kung saan ginaganap ang potentiation. Sa kasong ito, ang mga kabuuan ng mga termino ay binago sa isang produkto ng mga kadahilanan.

Kadalasan, ang mga tunay na logarithm ay ginagamit sa mga base 2 (binary), Euler's number e ≈ 2.718 (natural logarithm) at 10 (decimal).

Naka-on sa yugtong ito ito ay ipinapayong isaalang-alang mga sample ng logarithm log 7 2 , ln 5, lg0.0001.

At ang mga entry na lg(-3), log -3 3.2, log -1 -4.3 ay walang katuturan, dahil sa una sa kanila isang negatibong numero ang inilalagay sa ilalim ng tanda ng logarithm, sa pangalawa mayroong negatibong numero sa base, at sa pangatlo ay may negatibong numero sa ilalim ng logarithm sign at unit sa base.

Mga kondisyon para sa pagtukoy ng logarithm.

Ito ay nagkakahalaga ng pagsasaalang-alang nang hiwalay sa mga kundisyon a > 0, a ≠ 1, b > 0. kung saan nakukuha natin kahulugan ng logarithm. Isaalang-alang natin kung bakit kinuha ang mga paghihigpit na ito. Ang pagkakapantay-pantay ng form na x = log α ay makakatulong sa atin dito b, na tinatawag na pangunahing logarithmic identity, na direktang sumusunod sa kahulugan ng logarithm na ibinigay sa itaas.

Kunin natin ang kondisyon a≠1. Dahil ang isa sa anumang kapangyarihan ay katumbas ng isa, kung gayon ang pagkakapantay-pantay x=log α b maaari lamang umiral kapag b=1, ngunit ang log 1 1 ay magiging anumang tunay na numero. Upang maalis ang kalabuan na ito, kukunin namin a≠1.

Patunayan natin ang pangangailangan ng kondisyon a>0. Sa a=0 ayon sa pagbabalangkas ng logarithm ay maaari lamang umiral kapag b=0. At ayon noon log 0 0 maaaring maging anumang di-zero na tunay na numero, dahil ang zero sa anumang di-zero na kapangyarihan ay zero. Ang kalabuan na ito ay maaaring alisin ng kondisyon a≠0. At kailan a<0 kailangan nating tanggihan ang pagsusuri ng mga makatwiran at hindi makatwiran na mga halaga ng logarithm, dahil ang isang antas na may makatwiran at hindi makatwiran na exponent ay tinukoy lamang para sa mga di-negatibong base. Ito ay para sa kadahilanang ito na ang kondisyon ay itinakda a>0.

At ang huling kondisyon b>0 sumusunod mula sa hindi pagkakapantay-pantay a>0, dahil x=log α b, at ang halaga ng degree na may positibong base a laging positibo.

Mga tampok ng logarithms.

Logarithms nailalarawan sa pamamagitan ng katangi-tangi mga tampok, na humantong sa kanilang malawakang paggamit upang makabuluhang mapadali ang maingat na pagkalkula. Kapag lumipat "sa mundo ng logarithms," ang multiplikasyon ay nababago sa isang mas madaling karagdagan, ang paghahati ay binago sa pagbabawas, at ang exponentiation at root extraction ay binago, ayon sa pagkakabanggit, sa multiplikasyon at paghahati ng exponent.

Pagbubuo ng mga logarithms at talahanayan ng kanilang mga halaga (para sa trigonometriko function) ay unang inilathala noong 1614 ng Scottish mathematician na si John Napier. Ang mga logarithmic table, na pinalaki at idinetalye ng ibang mga siyentipiko, ay malawakang ginagamit sa mga kalkulasyon ng siyentipiko at inhinyero, at nanatiling may kaugnayan hanggang sa paggamit ng mga electronic calculator at computer.


Titingnan natin ngayon ang pag-convert ng mga expression na naglalaman ng logarithms na may karaniwang mga posisyon. Dito ay susuriin natin hindi lamang ang pagbabagong-anyo ng mga expression gamit ang mga katangian ng logarithms, ngunit isaalang-alang din ang pagbabagong-anyo ng mga expression na may pangkalahatang logarithms, na naglalaman ng hindi lamang logarithms, kundi pati na rin ang mga kapangyarihan, fraction, ugat, atbp. Gaya ng dati, ibibigay namin ang lahat ng materyal na may mga tipikal na halimbawa detalyadong paglalarawan mga desisyon.

Pag-navigate sa pahina.

Mga expression na may logarithms at logarithmic expression

Paggawa ng mga bagay gamit ang mga fraction

Sa nakaraang talata, sinuri namin ang mga pangunahing pagbabagong isinasagawa sa mga indibidwal na fraction na naglalaman ng logarithms. Ang mga pagbabagong ito, siyempre, ay maaaring isagawa sa bawat indibidwal na fraction na bahagi ng isang mas kumplikadong expression, halimbawa, na kumakatawan sa kabuuan, pagkakaiba, produkto at quotient ng mga katulad na fraction. Ngunit bilang karagdagan sa pagtatrabaho sa mga indibidwal na fraction, ang pag-convert ng mga expression ng ganitong uri ay kadalasang nagsasangkot ng pagsasagawa ng kaukulang mga operasyon na may mga fraction. Susunod na titingnan natin ang mga patakaran kung saan isinasagawa ang mga pagkilos na ito.

Mula noong ika-5 hanggang ika-6 na baitang alam na natin ang mga tuntunin kung saan ito isinasagawa. Sa artikulo isang pangkalahatang pagtingin sa mga operasyon na may mga fraction Pinalawak namin ang mga panuntunang ito mula sa mga ordinaryong fraction hanggang sa mga fraction ng pangkalahatang anyo na A/B, kung saan ang A at B ay ilang numeric, literal o variable na expression, at ang B ay hindi katumbas ng zero. Malinaw na ang mga fraction na may logarithms ay mga espesyal na kaso ng pangkalahatang fraction. At sa bagay na ito, malinaw na ang mga operasyon na may mga fraction na naglalaman ng logarithms sa kanilang mga notasyon ay isinasagawa ayon sa parehong mga patakaran. Namely:

  • Upang magdagdag o magbawas ng dalawang fraction na may parehong denominator, dapat mong idagdag o ibawas ang mga numerator nang naaayon, ngunit iwanan ang denominator na pareho.
  • Upang magdagdag o magbawas ng dalawang fraction na may iba't ibang denominador, dapat natin silang pangunahan karaniwang denominador at isagawa ang mga angkop na aksyon ayon sa naunang tuntunin.
  • Upang i-multiply ang dalawang fraction, kailangan mong magsulat ng isang fraction na ang numerator ay ang produkto ng mga numerator ng orihinal na mga fraction, at ang denominator ay ang produkto ng mga denominator.
  • Upang hatiin ang isang fraction sa isang fraction, kailangan mong divisible fraction multiply sa inverse fraction ng divisor, iyon ay, sa isang fraction na may numerator at denominator swapped.

Narito ang ilang mga halimbawa kung paano magsagawa ng mga operasyon na may mga fraction na naglalaman ng logarithms.

Halimbawa.

Magsagawa ng mga operasyon na may mga fraction na naglalaman ng logarithms: a) , b) , V) , G) .

Solusyon.

a) Ang mga denominador ng mga fraction na idinaragdag ay malinaw na pareho. Samakatuwid, ayon sa panuntunan para sa pagdaragdag ng mga fraction na may parehong denominator, idinaragdag namin ang mga numerator at iiwan ang denominator na pareho: .

b) Dito magkaiba ang mga denominador. Samakatuwid, kailangan mo muna i-convert ang mga fraction sa parehong denominator. Sa aming kaso, ang mga denominator ay ipinakita na sa anyo ng mga produkto, at ang kailangan lang nating gawin ay kunin ang denominator ng unang fraction at idagdag dito ang nawawalang mga salik mula sa denominator ng pangalawang bahagi. Sa ganitong paraan makakakuha tayo ng isang karaniwang denominator ng form . Sa kasong ito, ang mga ibinawas na fraction ay dinadala sa isang common denominator gamit ang mga karagdagang salik sa anyo ng logarithm at ang expression na x 2 ·(x+1), ayon sa pagkakabanggit. Pagkatapos nito, ang natitira na lang ay ibawas ang mga fraction na may parehong denominator, na hindi mahirap.

Kaya ang solusyon ay:

c) Alam na ang resulta ng pagpaparami ng mga fraction ay isang fraction, ang numerator nito ay ang produkto ng mga numerator, at ang denominator ay ang produkto ng mga denominator, samakatuwid

Madaling makita na kaya mo pagbabawas ng isang fraction sa pamamagitan ng dalawa at sa pamamagitan ng decimal logarithm, bilang isang resulta mayroon kami .

d) Lumipat tayo mula sa paghahati ng mga fraction hanggang sa multiplikasyon, na pinapalitan ang divisor fraction ng inverse fraction nito. Kaya

Ang numerator ng resultang fraction ay maaaring katawanin bilang , kung saan malinaw na nakikita ang karaniwang factor ng numerator at denominator - factor x, maaari mong bawasan ang fraction sa pamamagitan nito:

Sagot:

a) , b) , V) , G) .

Dapat alalahanin na ang mga operasyon na may mga fraction ay isinasagawa na isinasaalang-alang ang pagkakasunud-sunod kung saan ang mga aksyon ay ginanap: una, pagpaparami at paghahati, pagkatapos ay pagdaragdag at pagbabawas, at kung mayroong mga panaklong, pagkatapos ay ang mga aksyon sa panaklong ay isinasagawa muna.

Halimbawa.

Gawin ang mga bagay na may mga fraction .

Solusyon.

Una, idinagdag namin ang mga fraction sa mga bracket, pagkatapos nito ay magpaparami kami:

Sagot:

Sa puntong ito, nananatiling sabihin nang malakas ang tatlong medyo halata, ngunit sa parehong oras mahahalagang punto:

Pag-convert ng mga Expression Gamit ang Properties ng Logarithms

Kadalasan, ang pagbabago ng mga expression na may logarithms ay nagsasangkot ng paggamit ng mga pagkakakilanlan na nagpapahayag ng kahulugan ng logarithm at

Tulad ng alam mo, kapag nagpaparami ng mga expression na may mga kapangyarihan, ang kanilang mga exponents ay palaging nagdaragdag (a b *a c = a b+c). Ang batas sa matematika na ito ay hinango ni Archimedes, at nang maglaon, noong ika-8 siglo, ang mathematician na si Virasen ay lumikha ng isang talahanayan ng mga integer exponents. Sila ang nagsilbi para sa karagdagang pagtuklas ng logarithms. Ang mga halimbawa ng paggamit ng function na ito ay matatagpuan halos kahit saan kung saan kailangan mong pasimplehin ang masalimuot na multiplikasyon sa pamamagitan ng simpleng karagdagan. Kung gumugugol ka ng 10 minuto sa pagbabasa ng artikulong ito, ipapaliwanag namin sa iyo kung ano ang mga logarithms at kung paano gamitin ang mga ito. Sa simple at naa-access na wika.

Kahulugan sa matematika

Ang logarithm ay isang expression ng sumusunod na anyo: log a b=c, iyon ay, ang logarithm ng anumang hindi negatibong numero (iyon ay, anumang positibo) "b" sa base nito na "a" ay itinuturing na kapangyarihan "c ” kung saan kinakailangan na itaas ang batayang “a” upang sa huli ay makuha ang halagang "b". Suriin natin ang logarithm gamit ang mga halimbawa, sabihin nating mayroong expression log 2 8. Paano mahahanap ang sagot? Ito ay napaka-simple, kailangan mong makahanap ng isang kapangyarihan na mula 2 hanggang sa kinakailangang kapangyarihan ay makakakuha ka ng 8. Pagkatapos gumawa ng ilang mga kalkulasyon sa iyong ulo, makuha namin ang numero 3! At totoo iyon, dahil ang 2 sa kapangyarihan ng 3 ay nagbibigay ng sagot bilang 8.

Mga uri ng logarithms

Para sa maraming mga mag-aaral at mag-aaral, ang paksang ito ay tila kumplikado at hindi maintindihan, ngunit sa katunayan ang mga logarithms ay hindi nakakatakot, ang pangunahing bagay ay upang maunawaan ang kanilang pangkalahatang kahulugan at tandaan ang kanilang mga katangian at ilang mga patakaran. May tatlo indibidwal na species logarithmic expression:

  1. Natural logarithm ln a, kung saan ang base ay ang Euler number (e = 2.7).
  2. Decimal a, kung saan ang base ay 10.
  3. Logarithm ng anumang numero b sa base a>1.

Ang bawat isa sa kanila ay malulutas sa isang karaniwang paraan, kabilang ang pagpapagaan, pagbabawas at kasunod na pagbabawas sa isang solong logarithm gamit ang logarithmic theorems. Upang makuha ang tamang mga halaga ng logarithms, dapat mong tandaan ang kanilang mga katangian at ang pagkakasunud-sunod ng mga aksyon kapag nilulutas ang mga ito.

Mga panuntunan at ilang mga paghihigpit

Sa matematika, mayroong ilang mga alituntunin-mga hadlang na tinatanggap bilang isang axiom, iyon ay, hindi sila napapailalim sa talakayan at ang katotohanan. Halimbawa, imposibleng hatiin ang mga numero sa zero, at imposible ring kunin ang pantay na ugat ng mga negatibong numero. Ang mga logarithm ay mayroon ding sariling mga panuntunan, na sumusunod kung saan madali mong matutunang gumana kahit na may mahaba at may kakayahang logarithmic na mga expression:

  • Ang base na "a" ay dapat palaging mas malaki kaysa sa zero, at hindi katumbas ng 1, kung hindi, mawawala ang kahulugan ng expression, dahil ang "1" at "0" sa anumang antas ay palaging katumbas ng kanilang mga halaga;
  • kung a > 0, pagkatapos ay a b >0, lumalabas na ang "c" ay dapat ding mas malaki sa zero.

Paano malutas ang mga logarithms?

Halimbawa, ang gawain ay ibinigay upang mahanap ang sagot sa equation na 10 x = 100. Ito ay napakadali, kailangan mong pumili ng isang kapangyarihan sa pamamagitan ng pagtaas ng numero sampu kung saan makakakuha tayo ng 100. Ito, siyempre, ay 10 2 = 100.

Ngayon, katawanin natin ang expression na ito sa logarithmic form. Nakukuha namin ang log 10 100 = 2. Kapag nilulutas ang mga logarithm, halos lahat ng mga aksyon ay nagsasama-sama upang mahanap ang kapangyarihan kung saan kinakailangan upang ipasok ang base ng logarithm upang makakuha ng isang naibigay na numero.

Upang tumpak na matukoy ang halaga ng isang hindi kilalang degree, kailangan mong matutunan kung paano magtrabaho sa isang talahanayan ng mga degree. Mukhang ganito:

Tulad ng nakikita mo, ang ilang mga exponent ay maaaring mahulaan nang intuitive kung mayroon kang teknikal na pag-iisip at kaalaman sa talahanayan ng multiplikasyon. Gayunpaman para sa malalaking halaga kakailanganin mo ng talahanayan ng mga degree. Maaari itong magamit kahit na sa mga walang alam tungkol sa kumplikado mga paksa sa matematika. Ang kaliwang column ay naglalaman ng mga numero (base a), ang pinakamataas na hilera ng mga numero ay ang halaga ng power c kung saan itinataas ang numero a. Sa intersection, ang mga cell ay naglalaman ng mga halaga ng numero na ang sagot (a c = b). Kunin natin, halimbawa, ang pinakaunang cell na may numerong 10 at parisukat ito, nakukuha natin ang halaga na 100, na ipinahiwatig sa intersection ng ating dalawang cell. Ang lahat ay napakasimple at madali na kahit na ang pinakatotoong humanist ay mauunawaan!

Mga equation at hindi pagkakapantay-pantay

Lumalabas na sa ilalim ng ilang mga kundisyon ang exponent ay ang logarithm. Samakatuwid, ang anumang mathematical numerical expression ay maaaring isulat bilang isang logarithmic equality. Halimbawa, ang 3 4 =81 ay maaaring isulat bilang base 3 logarithm ng 81 na katumbas ng apat (log 3 81 = 4). Para sa mga negatibong kapangyarihan ang mga patakaran ay pareho: 2 -5 = 1/32 isinulat namin ito bilang isang logarithm, nakukuha namin ang log 2 (1/32) = -5. Isa sa mga pinakakaakit-akit na seksyon ng matematika ay ang paksa ng "logarithms". Titingnan natin ang mga halimbawa at solusyon ng mga equation sa ibaba, kaagad pagkatapos pag-aralan ang kanilang mga katangian. Ngayon tingnan natin kung ano ang hitsura ng mga hindi pagkakapantay-pantay at kung paano makilala ang mga ito mula sa mga equation.

Ang isang expression ng sumusunod na form ay ibinigay: log 2 (x-1) > 3 - ito ay isang logarithmic inequality, dahil ang hindi kilalang halaga na "x" ay nasa ilalim ng logarithmic sign. At din sa pagpapahayag ng dalawang dami ay inihambing: ang logarithm ng nais na numero sa base ng dalawa ay mas malaki kaysa sa bilang tatlo.

Ang pinakamahalagang pagkakaiba sa pagitan ng mga logarithmic equation at hindi pagkakapantay-pantay ay ang mga equation na may logarithms (halimbawa - logarithm 2 x = √9) ay nagpapahiwatig ng isa o higit pang mga tiyak na numerical values ​​sa sagot, samantalang kapag nilulutas ang mga hindi pagkakapantay-pantay, sila ay tinukoy bilang isang rehiyon. mga katanggap-tanggap na halaga, at ang mga breakpoint ng function na ito. Bilang resulta, ang sagot ay hindi isang simpleng hanay ng mga indibidwal na numero, tulad ng sa sagot sa isang equation, ngunit isang tuluy-tuloy na serye o hanay ng mga numero.

Mga pangunahing teorema tungkol sa logarithms

Kapag nilulutas ang mga primitive na gawain ng paghahanap ng mga halaga ng logarithm, ang mga katangian nito ay maaaring hindi kilala. Gayunpaman, pagdating sa logarithmic equation o inequalities, una sa lahat, kinakailangan na malinaw na maunawaan at mailapat sa pagsasanay ang lahat ng mga pangunahing katangian ng logarithms. Titingnan natin ang mga halimbawa ng mga equation sa ibang pagkakataon, tingnan muna natin ang bawat property nang mas detalyado.

  1. Ang pangunahing pagkakakilanlan ay ganito ang hitsura: a logaB =B. Nalalapat lamang ito kapag ang a ay mas malaki sa 0, hindi katumbas ng isa, at ang B ay mas malaki sa zero.
  2. Ang logarithm ng produkto ay maaaring katawanin sa sumusunod na formula: log d (s 1 * s 2) = log d s 1 + log d s 2. Sa kasong ito kinakailangan ay: d, s 1 at s 2 > 0; a≠1. Maaari kang magbigay ng patunay para sa logarithmic formula na ito, na may mga halimbawa at solusyon. Hayaang mag-log a s 1 = f 1 at mag-log a s 2 = f 2, pagkatapos ay a f1 = s 1, a f2 = s 2. Nakukuha namin na s 1 * s 2 = a f1 *a f2 = a f1+f2 (mga katangian ng degrees ), at pagkatapos ay sa pamamagitan ng kahulugan: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, na siyang kailangang patunayan.
  3. Ang logarithm ng quotient ay ganito ang hitsura: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Ang theorem sa anyo ng isang formula ay tumatagal ng sumusunod na anyo: log a q b n = n/q log a b.

Ang formula na ito ay tinatawag na "property of the degree of logarithm." Ito ay kahawig ng mga katangian ng mga ordinaryong degree, at ito ay hindi nakakagulat, dahil ang lahat ng matematika ay batay sa natural na postulates. Tingnan natin ang patunay.

Hayaang mag-log a b = t, lumalabas na a t =b. Kung itataas natin ang parehong bahagi sa kapangyarihan m: a tn = b n ;

ngunit dahil a tn = (a q) nt/q = b n, samakatuwid mag-log a q b n = (n*t)/t, pagkatapos ay mag-log a q b n = n/q log a b. Ang teorama ay napatunayan.

Mga halimbawa ng mga problema at hindi pagkakapantay-pantay

Ang pinakakaraniwang uri ng mga problema sa logarithms ay mga halimbawa ng mga equation at hindi pagkakapantay-pantay. Ang mga ito ay matatagpuan sa halos lahat ng mga libro ng problema, at isa ring kinakailangang bahagi ng mga pagsusulit sa matematika. Para sa pagpasok sa unibersidad o pagpasa mga pagsusulit sa pasukan sa matematika kailangan mong malaman kung paano lutasin nang tama ang mga ganitong problema.

Sa kasamaang palad, walang nag-iisang plano o pamamaraan para sa paglutas at pagtukoy ng hindi kilalang halaga ng logarithm, ngunit maaaring ilapat ang ilang mga patakaran sa bawat hindi pagkakapantay-pantay ng matematika o logarithmic equation. Una sa lahat, dapat mong malaman kung ang expression ay maaaring gawing simple o humantong sa pangkalahatang hitsura. Maaari mong gawing simple ang mahabang logarithmic expression kung gagamitin mo nang tama ang mga katangian ng mga ito. Kilalanin natin sila nang mabilis.

Kapag nilulutas ang mga logarithmic equation, dapat nating matukoy kung anong uri ng logarithm ang mayroon tayo: ang isang halimbawang expression ay maaaring maglaman ng natural na logarithm o isang decimal.

Narito ang mga halimbawa ln100, ln1026. Ang kanilang solusyon ay bumababa sa katotohanan na kailangan nilang matukoy ang kapangyarihan kung saan ang base 10 ay magiging katumbas ng 100 at 1026, ayon sa pagkakabanggit. Upang malutas ang mga natural na logarithms, kailangan mong ilapat ang mga logarithmic na pagkakakilanlan o ang kanilang mga katangian. Tingnan natin ang mga halimbawa ng paglutas ng mga problemang logarithmic ng iba't ibang uri.

Paano Gumamit ng Mga Logarithm Formula: May Mga Halimbawa at Solusyon

Kaya, tingnan natin ang mga halimbawa ng paggamit ng mga pangunahing teorema tungkol sa logarithms.

  1. Ang pag-aari ng logarithm ng isang produkto ay maaaring gamitin sa mga gawain kung saan kinakailangan na palawakin malaking halaga mga numero b sa mas simpleng mga kadahilanan. Halimbawa, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Ang sagot ay 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1.5 - tulad ng nakikita mo, gamit ang ikaapat na pag-aari ng kapangyarihan ng logarithm, nalutas namin ang isang tila kumplikado at hindi malulutas na expression. Kailangan mo lamang i-factor ang base at pagkatapos ay alisin ang mga exponent value sa sign ng logarithm.

Mga takdang-aralin mula sa Unified State Exam

Ang logarithms ay madalas na matatagpuan sa mga pagsusulit sa pasukan, lalo na ang maraming problema sa logarithmic sa Unified State Exam (pagsusulit ng estado para sa lahat ng nagtapos sa paaralan). Kadalasan, ang mga gawaing ito ay naroroon hindi lamang sa bahagi A (ang pinakamadaling bahagi ng pagsusulit ng pagsusulit), kundi pati na rin sa bahagi C (ang pinakamasalimuot at napakaraming gawain). Ang pagsusulit ay nangangailangan ng tumpak at perpektong kaalaman sa paksang "Natural logarithms".

Ang mga halimbawa at solusyon sa mga problema ay kinuha mula sa opisyal Mga pagpipilian sa Pinag-isang State Exam. Tingnan natin kung paano nalutas ang mga naturang gawain.

Ibinigay na log 2 (2x-1) = 4. Solusyon:
isulat muli natin ang expression, pinasimple ito ng kaunting log 2 (2x-1) = 2 2, sa pamamagitan ng kahulugan ng logarithm nakukuha natin na 2x-1 = 2 4, samakatuwid 2x = 17; x = 8.5.

  • Pinakamainam na bawasan ang lahat ng logarithms sa parehong base upang ang solusyon ay hindi masalimuot at nakakalito.
  • Ang lahat ng mga expression sa ilalim ng logarithm sign ay ipinahiwatig bilang positibo, samakatuwid, kapag ang exponent ng isang expression na nasa ilalim ng logarithm sign at bilang base nito ay kinuha bilang isang multiplier, ang expression na natitira sa ilalim ng logarithm ay dapat na positibo.